Для упрощения предположим, что у вас есть ядро 3x3
k(0,0) k(0,1) k(0,2)
k(1,0) k(1,1) k(1,2)
k(2,0) k(2,1) k(2,2)
для вычисления свертки: вы сканируете входное изображение (помеченное I
) слева направо, сверху вниз и для каждого пикселя вводаизображение присвоить одно значение, рассчитанное по приведенной ниже формуле:
newValue(y,x) = I(y-1,x-1) * k(0,0) + I(y-1,x) * k(0,1) + I(y-1,x+1) * k(0,2)
+ I(y,x-1) * k(1,0) + I(y,x) * k(1,1) + I(y,x+1) * k(1,2) +
+ I(y+1,x-1) * k(2,0) + I(y+1,x) * k(2,1) + I(y+1,x+1) * k(2,2)
------------------x------------>
|
|
| [k(0,0) k(0,1) k(0,2)]
y [k(1,0) k(1,1) k(1,2)]
| [k(2,0) k(2,1) k(2,2)]
|
(y,x)
входного изображения (I
) является точка привязки ядра, чтобы присвоить новое значение I(y,x)
вы должны умножить каждыйk
коэффициент для соответствующей точки I
- ваш код этого не делает.
Сначала необходимо создать матрицу dst
с размерами исходного изображения и пикселем того же типа. Затем вам нужно переписать ваши циклы, чтобы отразить формулу, описанную выше:
cv::Mat_<float> spatialConvolution(const cv::Mat_<float>& src, const cv::Mat_<float>& kernel)
{
Mat dst(src.rows,src.cols,src.type());
Mat_<float> flipped_kernel;
flip(kernel, flipped_kernel, -1);
const int dx = kernel.cols / 2;
const int dy = kernel.rows / 2;
for (int i = 0; i<src.rows; i++)
{
for (int j = 0; j<src.cols; j++)
{
float tmp = 0.0f;
for (int k = 0; k<flipped_kernel.rows; k++)
{
for (int l = 0; l<flipped_kernel.cols; l++)
{
int x = j - dx + l;
int y = i - dy + k;
if (x >= 0 && x < src.cols && y >= 0 && y < src.rows)
tmp += src.at<float>(y, x) * flipped_kernel.at<float>(k, l);
}
}
dst.at<float>(i, j) = saturate_cast<float>(tmp);
}
}
return dst.clone();
}