ValueError: Tensor Proto больше, чем 2 ГБ - PullRequest
0 голосов
/ 20 октября 2019

В настоящее время я пытаюсь настроить больший набор данных с помощью BERT на основе опубликованного кода на моих собственных данных Colab-Code . Так как данные слишком велики для ввода, во время обучения возникает следующий код ошибки:

ValueError: Невозможно создать прототип тензора, содержимое которого превышает 2 ГБ.

Я уже пытался адаптировать код к этому, поскольку здесь уже есть решение , но в примере это не работает.

def create_model(is_predicting, input_ids, input_mask, segment_ids, labels,
                 num_labels):
  """Creates a classification model."""

  bert_module = hub.Module(
      BERT_MODEL_HUB,
      trainable=True)
  bert_inputs = dict(
      input_ids=input_ids,
      input_mask=input_mask,
      segment_ids=segment_ids)
  bert_outputs = bert_module(
      inputs=bert_inputs,
      signature="tokens",
      as_dict=True)

  # Use "pooled_output" for classification tasks on an entire sentence.
  # Use "sequence_outputs" for token-level output.
  output_layer = bert_outputs["pooled_output"]

  hidden_size = output_layer.shape[-1].value

  # Create our own layer to tune for politeness data.
  output_weights = tf.get_variable(
      "output_weights", [num_labels, hidden_size],
      initializer=tf.truncated_normal_initializer(stddev=0.02))

  output_bias = tf.get_variable(
      "output_bias", [num_labels], initializer=tf.zeros_initializer())

  with tf.variable_scope("loss"):

    # Dropout helps prevent overfitting
    output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)

    logits = tf.matmul(output_layer, output_weights, transpose_b=True)
    logits = tf.nn.bias_add(logits, output_bias)
    log_probs = tf.nn.log_softmax(logits, axis=-1)

    # Convert labels into one-hot encoding
    one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)

    predicted_labels = tf.squeeze(tf.argmax(log_probs, axis=-1, output_type=tf.int32))
    # If we're predicting, we want predicted labels and the probabiltiies.
    if is_predicting:
      return (predicted_labels, log_probs)

    # If we're train/eval, compute loss between predicted and actual label
    per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
    loss = tf.reduce_mean(per_example_loss)
    return (loss, predicted_labels, log_probs)




# model_fn_builder actually creates our model function
# using the passed parameters for num_labels, learning_rate, etc.
def model_fn_builder(num_labels, learning_rate, num_train_steps,
                     num_warmup_steps):
  """Returns `model_fn` closure for TPUEstimator."""
  def model_fn(features, labels, mode, params):  # pylint: disable=unused-argument
    """The `model_fn` for TPUEstimator."""

    input_ids = features["input_ids"]
    input_mask = features["input_mask"]
    segment_ids = features["segment_ids"]
    label_ids = features["label_ids"]

    is_predicting = (mode == tf.estimator.ModeKeys.PREDICT)

    # TRAIN and EVAL
    if not is_predicting:

      (loss, predicted_labels, log_probs) = create_model(
        is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)

      train_op = bert.optimization.create_optimizer(
          loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu=False)

      # Calculate evaluation metrics. 
      def metric_fn(label_ids, predicted_labels):
        accuracy = tf.metrics.accuracy(label_ids, predicted_labels)
        f1_score = tf.contrib.metrics.f1_score(
            label_ids,
            predicted_labels)
        auc = tf.metrics.auc(
            label_ids,
            predicted_labels)
        recall = tf.metrics.recall(
            label_ids,
            predicted_labels)
        precision = tf.metrics.precision(
            label_ids,
            predicted_labels) 
        true_pos = tf.metrics.true_positives(
            label_ids,
            predicted_labels)
        true_neg = tf.metrics.true_negatives(
            label_ids,
            predicted_labels)   
        false_pos = tf.metrics.false_positives(
            label_ids,
            predicted_labels)  
        false_neg = tf.metrics.false_negatives(
            label_ids,
            predicted_labels)
        return {
            "eval_accuracy": accuracy,
            "f1_score": f1_score,
            "auc": auc,
            "precision": precision,
            "recall": recall,
            "true_positives": true_pos,
            "true_negatives": true_neg,
            "false_positives": false_pos,
            "false_negatives": false_neg
        }

      eval_metrics = metric_fn(label_ids, predicted_labels)

      if mode == tf.estimator.ModeKeys.TRAIN:
        return tf.estimator.EstimatorSpec(mode=mode,
          loss=loss,
          train_op=train_op)
      else:
          return tf.estimator.EstimatorSpec(mode=mode,
            loss=loss,
            eval_metric_ops=eval_metrics)
    else:
      (predicted_labels, log_probs) = create_model(
        is_predicting, input_ids, input_mask, segment_ids, label_ids, num_labels)

      predictions = {
          'probabilities': log_probs,
          'labels': predicted_labels
      }
      return tf.estimator.EstimatorSpec(mode, predictions=predictions)

  # Return the actual model function in the closure
  return model_fn

1 Ответ

0 голосов
/ 20 октября 2019

Как вы можете прочитать здесь: https://github.com/tensorflow/tensorflow/issues/4291

Существует жесткое ограничение в 2 ГБ для сериализации отдельных тензоров из-за размера 32-битного знака в protobuf. * ​​1005 *

Вы должны использовать tf.Dataset вместо этого. Самый простой способ сделать это - создать объект TFRecord . Вы можете найти примеры того, как это сделать, по адресу https://www.tensorflow.org/tutorials/load_data/tf_records.

Другой подход (но это действительно зависит от того, как структурированы данные) может быть определением tf.Dataset, содержащим список путей для обучающих примеров. Затем вы можете сопоставить функцию каждому пути в наборе данных путей и проанализировать каждый файл в классическом коде Python (вы можете найти пример здесь: Как правильно отобразить функцию Python и затем пакетировать набор данных в Tensorflow ).

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...