Как использовать tenorflow :: ops :: NonMaxSuppression в label_image Тензор потока cpp пример, чтобы удалить несколько прямоугольников, предсказанных для одного объекта? - PullRequest
1 голос
/ 09 ноября 2019

Я использовал пример Tensorflow label_image https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/label_image, чтобы обнаружить и локализовать 10 объектов класса из изображения. Теперь я хочу удалить прямоугольник с несколькими предсказаниями для одного объекта с tenorsflow :: ops :: NonMaxSuppression. я не знаю, как использовать это в моем коде. пожалуйста, помогите мне решить это. нравится эта картинка

1 Ответ

0 голосов
/ 15 ноября 2019

Вы можете использовать приведенную ниже функцию для рисования полей, которые превышают порог, я беру его из API обнаружения объектов Tensorflow.

https://github.com/tensorflow/models/blob/master/research/object_detection/utils/visualization_utils.py


def visualize_boxes_and_labels_on_image_array(
    image,
    boxes,
    classes,
    scores,
    category_index,
    instance_masks=None,
    instance_boundaries=None,
    keypoints=None,
    track_ids=None,
    use_normalized_coordinates=False,
    max_boxes_to_draw=20,
    min_score_thresh=.5,
    agnostic_mode=False,
    line_thickness=4,
    groundtruth_box_visualization_color='black',
    skip_scores=False,
    skip_labels=False,
    skip_track_ids=False):
  """Overlay labeled boxes on an image with formatted scores and label names.

  This function groups boxes that correspond to the same location
  and creates a display string for each detection and overlays these
  on the image. Note that this function modifies the image in place, and returns
  that same image.

  Args:
    image: uint8 numpy array with shape (img_height, img_width, 3)
    boxes: a numpy array of shape [N, 4]
    classes: a numpy array of shape [N]. Note that class indices are 1-based,
      and match the keys in the label map.
    scores: a numpy array of shape [N] or None.  If scores=None, then
      this function assumes that the boxes to be plotted are groundtruth
      boxes and plot all boxes as black with no classes or scores.
    category_index: a dict containing category dictionaries (each holding
      category index `id` and category name `name`) keyed by category indices.
    instance_masks: a numpy array of shape [N, image_height, image_width] with
      values ranging between 0 and 1, can be None.
    instance_boundaries: a numpy array of shape [N, image_height, image_width]
      with values ranging between 0 and 1, can be None.
    keypoints: a numpy array of shape [N, num_keypoints, 2], can
      be None
    track_ids: a numpy array of shape [N] with unique track ids. If provided,
      color-coding of boxes will be determined by these ids, and not the class
      indices.
    use_normalized_coordinates: whether boxes is to be interpreted as
      normalized coordinates or not.
    max_boxes_to_draw: maximum number of boxes to visualize.  If None, draw
      all boxes.
    min_score_thresh: minimum score threshold for a box to be visualized
    agnostic_mode: boolean (default: False) controlling whether to evaluate in
      class-agnostic mode or not.  This mode will display scores but ignore
      classes.
    line_thickness: integer (default: 4) controlling line width of the boxes.
    groundtruth_box_visualization_color: box color for visualizing groundtruth
      boxes
    skip_scores: whether to skip score when drawing a single detection
    skip_labels: whether to skip label when drawing a single detection
    skip_track_ids: whether to skip track id when drawing a single detection

  Returns:
    uint8 numpy array with shape (img_height, img_width, 3) with overlaid boxes.
  """
  # Create a display string (and color) for every box location, group any boxes
  # that correspond to the same location.
  box_to_display_str_map = collections.defaultdict(list)
  box_to_color_map = collections.defaultdict(str)
  box_to_instance_masks_map = {}
  box_to_instance_boundaries_map = {}
  box_to_keypoints_map = collections.defaultdict(list)
  box_to_track_ids_map = {}
  if not max_boxes_to_draw:
    max_boxes_to_draw = boxes.shape[0]
  for i in range(min(max_boxes_to_draw, boxes.shape[0])):
    if scores is None or scores[i] > min_score_thresh:
      box = tuple(boxes[i].tolist())
      if instance_masks is not None:
        box_to_instance_masks_map[box] = instance_masks[i]
      if instance_boundaries is not None:
        box_to_instance_boundaries_map[box] = instance_boundaries[i]
      if keypoints is not None:
        box_to_keypoints_map[box].extend(keypoints[i])
      if track_ids is not None:
        box_to_track_ids_map[box] = track_ids[i]
      if scores is None:
        box_to_color_map[box] = groundtruth_box_visualization_color
      else:
        display_str = ''
        if not skip_labels:
          if not agnostic_mode:
            if classes[i] in six.viewkeys(category_index):
              class_name = category_index[classes[i]]['name']
            else:
              class_name = 'N/A'
            display_str = str(class_name)
        if not skip_scores:
          if not display_str:
            display_str = '{}%'.format(int(100*scores[i]))
          else:
            display_str = '{}: {}%'.format(display_str, int(100*scores[i]))
        if not skip_track_ids and track_ids is not None:
          if not display_str:
            display_str = 'ID {}'.format(track_ids[i])
          else:
            display_str = '{}: ID {}'.format(display_str, track_ids[i])
        box_to_display_str_map[box].append(display_str)
        if agnostic_mode:
          box_to_color_map[box] = 'DarkOrange'
        elif track_ids is not None:
          prime_multipler = _get_multiplier_for_color_randomness()
          box_to_color_map[box] = STANDARD_COLORS[
              (prime_multipler * track_ids[i]) % len(STANDARD_COLORS)]
        else:
          box_to_color_map[box] = STANDARD_COLORS[
              classes[i] % len(STANDARD_COLORS)]

  # Draw all boxes onto image.
  for box, color in box_to_color_map.items():
    ymin, xmin, ymax, xmax = box
    if instance_masks is not None:
      draw_mask_on_image_array(
          image,
          box_to_instance_masks_map[box],
          color=color
      )
    if instance_boundaries is not None:
      draw_mask_on_image_array(
          image,
          box_to_instance_boundaries_map[box],
          color='red',
          alpha=1.0
      )
    draw_bounding_box_on_image_array(
        image,
        ymin,
        xmin,
        ymax,
        xmax,
        color=color,
        thickness=line_thickness,
        display_str_list=box_to_display_str_map[box],
        use_normalized_coordinates=use_normalized_coordinates)
    if keypoints is not None:
      draw_keypoints_on_image_array(
          image,
          box_to_keypoints_map[box],
          color=color,
          radius=line_thickness / 2,
          use_normalized_coordinates=use_normalized_coordinates)

  return image

...