Как отобразить сгруппированный по столбцу во время ffill () и не агг с помощью панд? - PullRequest
4 голосов
/ 09 ноября 2019

Это не дубликат. Я уже упоминал об этом post_1 и post_2

Мой вопрос отличается и не касается agg функции. Это также относится к отображению сгруппированных по столбцам во время операции ffill . Хотя код работает нормально, просто поделитесь полным кодом, чтобы вы могли получить представление. Проблема в закомментированной строке . обратите внимание на эту строку ниже.

У меня есть данные, как показано ниже

df = pd.DataFrame({
'subject_id':[1,1,1,1,1,1,1,2,2,2,2,2],
'time_1' :['2173-04-03 12:35:00','2173-04-03 12:50:00','2173-04-05 12:59:00','2173-05-04 13:14:00','2173-05-05 13:37:00','2173-07-06 13:39:00','2173-07-08 11:30:00','2173-04-08 16:00:00','2173-04-09 22:00:00','2173-04-11 04:00:00','2173- 04-13 04:30:00','2173-04-14 08:00:00'],
 'val' :[5,5,5,5,1,6,5,5,8,3,4,6]})
df['time_1'] = pd.to_datetime(df['time_1'])
df['day'] = df['time_1'].dt.day
df['month'] = df['time_1'].dt.month

Что этот код с помощью Jezrael из форума делает add missing dates на основе порогового значения. Единственная проблема, я не вижу grouped by column during output

df['time_1'] = pd.to_datetime(df['time_1'])
df['day'] = df['time_1'].dt.day
df['date'] = df['time_1'].dt.floor('d')

df1 = (df.set_index('date')
         .groupby('subject_id')
         .resample('d')
         .last()
         .index
         .to_frame(index=False))
df2 = df1.merge(df, how='left') 

thresh = 5
mask = df2['day'].notna()
s = mask.cumsum().mask(mask)
df2['count'] = s.map(s.value_counts())

df2 = df2[(df2['count'] < thresh) | (df2['count'].isna())]

df2 = df2.groupby(df2['subject_id']).ffill()  # problem is here #here is the problem

dates = df2['time_1'].dt.normalize() 
df2['time_1'] += np.where(dates == df2['date'], 0, df2['date'] - dates)
df2['day'] = df2['time_1'].dt.day
df2['val'] = df2['val'].astype(int)

Как показано в коде выше, я попробовал следующие подходы

df2 = df2.groupby(df2['subject_id']).ffill()  # doesn't help
df2 = df2.groupby(df2['subject_id']).ffill().reset_index()  # doesn't help
df2 = df2.groupby('subject_id',as_index=False).ffill()  # doesn't help

Неверный вывод без subject_id

enter image description here

Я ожидаю, что мой вывод также будет иметь столбец subject_id

1 Ответ

3 голосов
/ 10 ноября 2019

Вот 2 возможных решения - указать все столбцы в списке после groupby и присвоить обратно:

cols = df2.columns.difference(['subject_id'])
df2[cols] = df2.groupby('subject_id')[cols].ffill()  # problem is here #here is the problem

Или создать индекс по subject_id столбцу и группировать по индексу:

#newer pandas versions
df2 = df2.set_index('subject_id').groupby('subject_id').ffill().reset_index()

#oldier pandas versions
df2 = df2.set_index('subject_id').groupby(level=0).ffill().reset_index()

dates = df2['time_1'].dt.normalize() 
df2['time_1'] += np.where(dates == df2['date'], 0, df2['date'] - dates)
df2['day'] = df2['time_1'].dt.day
df2['val'] = df2['val'].astype(int)
print (df2)
     subject_id       date              time_1  val  day  month  count
0             1 2173-04-03 2173-04-03 12:35:00    5    3    4.0    NaN
1             1 2173-04-03 2173-04-03 12:50:00    5    3    4.0    NaN
2             1 2173-04-04 2173-04-04 12:50:00    5    4    4.0    1.0
3             1 2173-04-05 2173-04-05 12:59:00    5    5    4.0    1.0
32            1 2173-05-04 2173-05-04 13:14:00    5    4    5.0    1.0
33            1 2173-05-05 2173-05-05 13:37:00    1    5    5.0    1.0
95            1 2173-07-06 2173-07-06 13:39:00    6    6    7.0    1.0
96            1 2173-07-07 2173-07-07 13:39:00    6    7    7.0    1.0
97            1 2173-07-08 2173-07-08 11:30:00    5    8    7.0    1.0
98            2 2173-04-08 2173-04-08 16:00:00    5    8    4.0    NaN
99            2 2173-04-09 2173-04-09 22:00:00    8    9    4.0    NaN
100           2 2173-04-10 2173-04-10 22:00:00    8   10    4.0    1.0
101           2 2173-04-11 2173-04-11 04:00:00    3   11    4.0    1.0
102           2 2173-04-12 2173-04-12 04:00:00    3   12    4.0    1.0
103           2 2173-04-13 2173-04-13 04:30:00    4   13    4.0    1.0
104           2 2173-04-14 2173-04-14 08:00:00    6   14    4.0    1.0
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...