Я использую предварительно обученную модель Vgg16, чтобы выполнить 100 задач классификации. Набор данных имеет крошечный образ, каждый класс содержит 500 изображений, и я случайным образом выбираю 100 классов из крошечного изображения для своих данных обучения (400) и проверки (100). Поэтому я изменяю input_shape для vgg16 для размера 32 * 32. Результаты всегда выглядят как переоснащение. Уровень подготовки высок, но val_acc всегда держится почти на 40%. Я использовал dropout, регуляризацию L2, увеличение данных ... но val_acc также застрял почти на 40%. Как я могу сделать для переоснащения или исправить мой код. Спасибо
img_width, img_height = 32, 32
epochs = 50
learning_rate = 1e-4
steps_per_epoch = 2500
train_path='./training_set_100A/'
valid_path='./testing_set_100A/'
test_path='./testing_set_100A/'
class_num = 100
train_batches = ImageDataGenerator(rescale=1. / 255
,rotation_range=20, zoom_range=0.15,
width_shift_range=0.2, height_shift_range=0.2,
shear_range=0.15,
horizontal_flip=True, fill_mode="nearest"
).flow_from_directory(
train_path, target_size=(img_width,img_height),
batch_size=32, shuffle=True)
valid_batches = ImageDataGenerator(rescale=1. / 255).flow_from_directory(
valid_path, target_size=(img_width,img_height),
batch_size=10, shuffle=False)
test_batches = ImageDataGenerator(rescale=1. / 255).flow_from_directory(
test_path, target_size=
(img_width,img_height),batch_size=10,shuffle=False)
seqmodel = Sequential()
VGG16Model = VGG16(weights='imagenet', include_top=False)
input = Input(shape=(img_width, img_height, 3), name='image_intput')
output_vgg16_conv = VGG16Model(input)
x = Flatten()(output_vgg16_conv)
x = Dense(4096, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(4096, activation='relu')(x)
x = Dropout(0.5)(x)
x = Dense(class_num, activation='softmax')(x)
funcmodel = Model([input], [x])
funcmodel.summary()
funcmodel.compile(optimizer=SGD(lr=learning_rate, momentum=0.9),
loss='categorical_crossentropy', metrics=['accuracy'])
train_history = funcmodel.fit_generator(train_batches,
steps_per_epoch=steps_per_epoch, validation_data=valid_batches,
validation_steps=1000, epochs=epochs, verbose=1)
`