Я написал код и успешно запустил и сохранил модель, но как я могу проверить данные
max_features = 1000
maxlen = 201
embedding_dims = 50
filters = 250
kernel_size = 3
hidden_dims = 250
print('Build model...')
model = Sequential()
# we start off with an efficient embedding layer which maps
# our vocab indices into embedding_dims dimensions
model.add(Embedding(max_features,
embedding_dims,
input_length=maxlen))
model.add(Dropout(0.2))
# we add a Convolution1D, which will learn filters
# word group filters of size filter_length:
model.add(Conv1D(filters,
kernel_size,
padding='valid',
activation='relu',
strides=1))
# we use max pooling:
model.add(GlobalMaxPooling1D())
# We add a vanilla hidden layer:
model.add(Dense(hidden_dims))
model.add(Dropout(0.2))
model.add(Activation('relu'))
# We project onto a single unit output layer, and squash it with a sigmoid:
model.add(Dense(11))
model.add(Activation('softmax'))
# We project onto a single unit output layer, and squash it with a sigmoid:
model.add(Dense(11))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
model.fit(x_train, y_train,
batch_size=32,
epochs=50,
validation_data=(x_test, y_test))
model.save('/content/model.tflearn')
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.22043222188949585
Test accuracy: 1.0
Например Вход: model.predict ("некоторый текст") Вывод: Работа в команде
Я думал, что вышеупомянутый метод может мне помочь? Я показываю, например, что нам нужно сделать одну функцию через функцию данных, которую мы можем проверить новыми данными.