Я использую keras в R для построения бинарного классификатора кошек / собак и использую набор данных из 3000 образцов (1500 кошек, 1500 собак, разделение 9: 1, обучение / тестирование). С каждой эпохой моя точность классификации не превышает 50%.
Буду признателен за любую помощь в том, что может пойти не так. Я трижды проверил мои справочники по тестированию и обучению, и split/testing/Cat/
содержит 150 изображений кошек, split/testing/Dog/
содержит 150 изображений собак, split/training/Cat/
содержит 1350 изображений кошек и split/training/Dog/
содержит 1350 изображений собак. Я впервые использую keras и запускаю классификатор изображений CNN, поэтому буду признателен за любые советы.
model <- keras_model_sequential() %>%
layer_conv_2d(filters = 32,
kernel_size = c(3,3),
activation = "relu",
input_shape = c(256, 256, 3)) %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_conv_2d(filters = 32,
kernel_size = c(3,3),
activation = "relu",
input_shape = c(256, 256, 3)) %>%
layer_max_pooling_2d(pool_size = c(2,2)) %>%
layer_dropout(rate = 0.25) %>%
layer_flatten() %>%
layer_dense(units = 256, activation = "relu") %>%
layer_dense(units = 1, activation = "sigmoid") %>%
compile(optimizer = 'adam',
loss = 'binary_crossentropy',
metrics = c("accuracy"))
datagen <- image_data_generator(rescale = 1/255)
train_generator <- flow_images_from_directory(directory = "split/training/",
generator = datagen,
target_size = c(256, 256),
classes = c("Cat","Dog"),
class_mode = "binary",
batch_size = 32)
test_generator <- flow_images_from_directory(directory = "split/testing/",
generator = datagen,
target_size = c(256, 256),
classes = c("Cat","Dog"),
class_mode = "binary",
batch_size = 32)
model %>% fit_generator(generator = train_generator,
steps_per_epoch = as.integer(train_generator$n / 32),
epochs = 5,
verbose = 1,
validation_data = test_generator)
Моя модель выглядит следующим образом:
> summary(model)
Model: "sequential_11"
______________________________________________________________________________
Layer (type) Output Shape Param #
==============================================================================
conv2d_10 (Conv2D) (None, 254, 254, 32) 896
______________________________________________________________________________
max_pooling2d_10 (MaxPooling2D) (None, 127, 127, 32) 0
______________________________________________________________________________
conv2d_11 (Conv2D) (None, 125, 125, 32) 9248
______________________________________________________________________________
max_pooling2d_11 (MaxPooling2D) (None, 62, 62, 32) 0
______________________________________________________________________________
dropout_7 (Dropout) (None, 62, 62, 32) 0
______________________________________________________________________________
flatten_5 (Flatten) (None, 123008) 0
______________________________________________________________________________
dense_13 (Dense) (None, 256) 31490304
______________________________________________________________________________
dense_14 (Dense) (None, 1) 257
==============================================================================
Total params: 31,500,705
Trainable params: 31,500,705
Non-trainable params: 0
______________________________________________________________________________
А итоги моей эпохи выглядят такэто:
> model %>% fit_generator(generator = train_generator, steps_per_epoch = as.integer(train_generator$n / 32), epochs = 5, verbose = 1, validation_data = test_generator)
Found 2700 images belonging to 2 classes.
Found 300 images belonging to 2 classes.
Epoch 1/5
84/84 [==============================] - 83s 984ms/step - loss: 7.5916 - accuracy: 0.4974 - val_loss: 7.5069 - val_accuracy: 0.5000
Epoch 2/5
84/84 [==============================] - 82s 977ms/step - loss: 7.6703 - accuracy: 0.5004 - val_loss: 7.8263 - val_accuracy: 0.5000
Epoch 3/5
84/84 [==============================] - 83s 984ms/step - loss: 7.7310 - accuracy: 0.4970 - val_loss: 7.8263 - val_accuracy: 0.5000