Я пытаюсь создать новый столбец на основе условной логики для уже существующих столбцов. Я понимаю, что могут быть более эффективные способы достижения этого, но у меня есть несколько условий, которые необходимо включить. Это только первый шаг.
Общая задача состоит в том, чтобы создать два новых столбца, сопоставленных с 1
и 2
. Они ссылаются на столбец Object
, поскольку у меня может быть несколько строк для каждой временной точки.
Object2
и Value
определяют способ сопоставления новых столбцов. Поэтому, если Value is == X
, я хочу сопоставить оба столбца Object
, чтобы вернуть соответствующие 1
и 2
для этого момента времени в новый столбец. Тот же процесс должен произойти, если Value is == Y
. Если Value is == Z
, я хочу вставить 0, 0
. Все остальное должно быть NaN
df = pd.DataFrame({
'Time' : ['2019-08-02 09:50:10.1','2019-08-02 09:50:10.1','2019-08-02 09:50:10.2','2019-08-02 09:50:10.3','2019-08-02 09:50:10.3','2019-08-02 09:50:10.4','2019-08-02 09:50:10.5','2019-08-02 09:50:10.6','2019-08-02 09:50:10.6'],
'Object' : ['B','A','A','A','C','C','C','B','B'],
'1' : [1,3,5,7,9,11,13,15,17],
'2' : [0,1,4,6,8,10,12,14,16],
'Object2' : ['A','A',np.nan,'C','C','C','C','B','A'],
'Value' : ['X','X',np.nan,'Y','Y','Y','Y','Z',np.nan],
})
def map_12(df):
for i in df['Value']:
if i == 'X':
df['A1'] = df['1']
df['A2'] = df['2']
elif i == 'Y':
df['A1'] = df['1']
df['A2'] = df['2']
elif i == 'Z':
df['A1'] = 0
df['A2'] = 0
else:
df['A1'] = np.nan
df['A2'] = np.nan
return df
Предполагаемый вывод:
Time Object 1 2 Object2 Value A1 A2
0 2019-08-02 09:50:10.1 A 1 0 A X 1.0 0.0 # Match A-A at this time point, so output is 1,0
1 2019-08-02 09:50:10.1 B 3 1 A X 1.0 0.0 # Still at same time point so use 1,0
2 2019-08-02 09:50:10.2 A 5 4 NaN NaN NaN NaN # No Value so NaN
3 2019-08-02 09:50:10.3 C 7 6 C Y 7.0 6.0 # Match C-C at this time point, so output is 7,6
4 2019-08-02 09:50:10.3 A 9 8 C Y 7.0 6.0 # Still at same time point so use 7,6
5 2019-08-02 09:50:10.4 C 11 10 C Y 11.0 10.0 # Match C-C at this time point, so output is 11,10
6 2019-08-02 09:50:10.5 C 13 12 C Y 13.0 12.0 # Match C-C at this time point, so output is 13,12
7 2019-08-02 09:50:10.6 B 15 14 B Z 0.0 0.0 # Z so 0,0
8 2019-08-02 09:50:10.6 B 17 16 A NaN NaN NaN # No Value so NaN
Новый пример df:
df = pd.DataFrame({
'Time' : ['2019-08-02 09:50:10.1','2019-08-02 09:50:10.1','2019-08-02 09:50:10.2','2019-08-02 09:50:10.3','2019-08-02 09:50:10.3','2019-08-02 09:50:10.4','2019-08-02 09:50:10.5','2019-08-02 09:50:10.6','2019-08-02 09:50:10.6'],
'Object' : ['B','A','A','A','C','C','C','B','B'],
'1' : [1,3,5,7,9,11,13,15,17],
'2' : [0,1,4,6,8,10,12,14,16],
'Object2' : ['A','A',np.nan,'C','C','C','C','B','A'],
'Value' : ['X','X',np.nan,'Y','Y','Y','Y','Z',np.nan],
})
Предполагаемый вывод:
Time Object 1 2 Object2 Value A1 A2
0 2019-08-02 09:50:10.1 B 1 0 A X 3.0 1.0 # Match A-A at this time point, so output is 3,1
1 2019-08-02 09:50:10.1 A 3 1 A X 3.0 1.0 # Still at same time point so use 3,1
2 2019-08-02 09:50:10.2 A 5 4 NaN NaN NaN NaN # No Value so NaN
3 2019-08-02 09:50:10.3 A 7 6 C Y 9.0 8.0 # Match C-C at this time point, so output is 9,8
4 2019-08-02 09:50:10.3 C 9 8 C Y 9.0 8.0 # Still at same time point so use 9,8
5 2019-08-02 09:50:10.4 C 11 10 C Y 11.0 10.0 # Match C-C at this time point, so output is 11,10
6 2019-08-02 09:50:10.5 C 13 12 C Y 13.0 12.0 # Match C-C at this time point, so output is 13,12
7 2019-08-02 09:50:10.6 B 15 14 B Z 0.0 0.0 # Z so 0,0
8 2019-08-02 09:50:10.6 B 17 16 A NaN NaN NaN # No Value so NaN