Как устранить несоответствие размера Multi Head Attention в pytorch? - PullRequest
0 голосов
/ 28 октября 2019

Изучая, как кодировать Multi Head Внимание в pytorch сейчас,

Я не могу решить проблему size_mismatch, если размер входного тензора имеет 4 dim.

Я имею в виду определениеи коды классов в http://nlp.seas.harvard.edu/2018/04/03/attention.html

Приносим извинения за доставленные неудобства. Можете ли вы дать мне совет?


#attention def and class

def clones(module, N):
    "Produce N identical layers."
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])

def attention(query, key, value, mask=None, dropout=None):
    "Compute 'Scaled Dot Product Attention'"
    d_k = query.size(-1)
    scores = torch.matmul(query, key.transpose(-2, -1)) \
             / math.sqrt(d_k)
    if mask is not None:
        scores = scores.masked_fill(mask == 0, -1e9)
    p_attn = F.softmax(scores, dim = -1)
    if dropout is not None:
        p_attn = dropout(p_attn)

    return torch.matmul(p_attn, value), p_attn

# MultiHead Attention class

class MultiHeadedAttention(nn.Module):
    def __init__(self, h, d_model, dropout=0.1):
        "Take in model size and number of heads."
        super(MultiHeadedAttention, self).__init__()
        assert d_model % h == 0
        # We assume d_v always equals d_k
        self.d_k = d_model // h
        self.h = h
        self.linears = clones(nn.Linear(d_model, d_model), 4)
        self.attn = None
        self.dropout = nn.Dropout(p=dropout)

    def forward(self, query, key, value, mask=None):
        "Implements Figure 2"
        if mask is not None:
            # Same mask applied to all h heads.
            mask = mask.unsqueeze(1)
        nbatches = query.size(0)

        # 1) Do all the linear projections in batch from d_model => h x d_k 
        query, key, value = \
            [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
             for l, x in zip(self.linears, (query, key, value))]

        # 2) Apply attention on all the projected vectors in batch. 
        x, self.attn = attention(query, key, value, mask=mask, 
                                 dropout=self.dropout)

        # 3) "Concat" using a view and apply a final linear. 
        x = x.transpose(1, 2).contiguous() \
             .view(nbatches, -1, self.h * self.d_k)
        return self.linears[-1](x)


# create test_4_dim tensor
X=torch.randn(10,5,64,64)
X=X.view(X.shape[0],X.shape[1],X.shape[2]*X.shape[3])
#X:torch.Size([10, 5, 4096])
query_=X.transpose(2,1)
key_=X
value_=X

print("query:",query_.size())
print("key:",key_.size())
print("value:",value_.size())
#query: torch.Size([10, 4096, 5])
#key: torch.Size([10, 5, 4096])
#value: torch.Size([10, 5, 4096])

multihead_testmodel= MultiHeadedAttention(h=4,d_model=4096,dropout=0.1)
#print(multihead_model)

output=multihead_testmodel(query=query_,key=key_,value=value_)
print("model output:",output.size())

#size mismatch, m1: [40960 x 5], m2: [4096 x 4096] at #../aten/src/TH/generic/THTensorMath.cpp:197

в случае, если тензор зарезан: torch.randn (5,64,64), этоКод не содержит ошибок.

X=torch.randn(5,64,64)
#X=X.view(X.shape[0],X.shape[1],X.shape[2]*X.shape[3])

query_=X.transpose(2,1)
key_=X
value_=X

print("query:",query_.size())
print("key:",key_.size())
print("value:",value_.size())

#query: torch.Size([5, 64, 64])
#key: torch.Size([5, 64, 64])
#value: torch.Size([5, 64, 64])

multihead_model= MultiHeadedAttention(h=4,d_model=64,dropout=0.1)
temp_output=multihead_model(query=query_,key=key_,value=value_)
print(temp_output.size())
#torch.Size([5, 64, 64])

1 Ответ

1 голос
/ 28 октября 2019

Похоже, что код ожидает получить те же измерения для query, key и value, поэтому, если вы не транспонируете, это решит проблему:

query_ = X
key_ = X
value_ = X

You 'Правильно, что для внимания к работе требуется транспонирование, но код уже обрабатывает это, вызывая key.transpose(-2, -1) в реализации внимания.

...