Как сохранить набор уникальных целочисленных массивов в Java - PullRequest
0 голосов
/ 28 октября 2019

Я пытаюсь сохранить список уникальных целочисленных массивов в Java. Я не могу использовать хэш-наборы, так как метод .equals не будет приравнивать int [], которые имеют одинаковые значения, но разные ссылки.

Ответы [ 3 ]

2 голосов
/ 28 октября 2019

Одним из вариантов будет использование List<Integer> вместо int[] в качестве элементов Set, что позволит вам использовать любую реализацию Set.

Если вы должны использовать массивы,Вы можете сохранить их в TreeSet<int[]> с пользовательским Comparator<int[]>, переданным конструктору TreeSet. Это должно работать, так как TreeSet не использует equals() и hashCode(), чтобы определить, идентичны ли два элемента.

1 голос
/ 28 октября 2019

Я думаю, что следующий фрагмент будет вашим решением. если я правильно понял

List<Integer> numberList = new ArrayList<Integer>();
int[] myInts = {1, 1, 2, 3, 3, 3, 3, 4};
for (int i : myInts) {
  if (!numberList.contains(i)) {
     numberList.add(i);
   }
}
0 голосов
/ 28 октября 2019

Вы можете обернуть int[] массивы в специальный держатель, который переопределяет equals и hashCode:

public class IntArrayHolder {
    private final int[] array;

    public IntArrayHolder(int[] array) {
        this.array = array;
    }

    public int[] getArray() {
        return array;
    }

    @Override
    public boolean equals(Object object) {
        if (this == object) return true;
        if (!(object instanceof IntArrayHolder)) return false;
        IntArrayHolder that = (IntArrayHolder) object;
        return Arrays.equals(array, that.array);
    }

    @Override
    public int hashCode() {
        return Arrays.hashCode(array);
    }
}

И используйте Set<IntArrayHolder> вместо Set<int[]>:

Set<IntArrayHolder> set = new HashSet<>();
set.add(new IntArrayHolder(new int[]{0}));
set.add(new IntArrayHolder(new int[]{0}));
set.add(new IntArrayHolder(new int[]{1}));
set.forEach(elm -> System.out.println(Arrays.toString(elm.getArray()))); // prints [1][0]

Вы также можете инкапсулировать перенос и развертывание в специальные универсальные классы и использовать их следующим образом:

Set<int[]> set = new MappedSet<>(new HashSet<>(), Mapper.from(
        IntArrayHolder::getArray,
        IntArrayHolder::new
));
set.add(new int[]{0});
set.add(new int[]{0});
set.add(new int[]{1});
set.forEach(elm -> System.out.println(Arrays.toString(elm))); // prints [1][0]

Вот Mapper, MappedSet, MappedCollection, MappedIterable,MappedIterator и MappedArray:

/**
 * <h1>Mapper</h1>
 * Represents a two way function which can be used for adapting
 * {@code Type<A>} to {@code Type<B>} where {@code Type} is invariant
 * generic type.
 *
 * <h2>Invertibility</h2>
 * <p>
 * If this mapper isn't bounded result of performing {@code out(in(x))} should
 * be similar to {@code x}, no guarantees are made about their equality. The same goes
 * with {@code in(out(x))}.
 *
 * <h2>Nullability</h2>
 * <p>
 * A mapper always converts {@code null} to {@code null} and non-null references to non-null
 * references. {@code null} can be passed to {@link #out(A)} and {@link #in(B)} methods, but
 * should never be passed to {@link #doOut(A)} and {@link #doIn(B)}.
 *
 * <h2>Bounded wildcards</h2>
 * <p>
 * Bounded wildcards should never be used on {@link A} type parameter, because mapper with bounded
 * {@link A} can't be accepted by any adapter and is completely useless.
 *
 * <p>Using of bounded wildcard on {@link B} type parameter indicates that mapper can perform
 * operations in only one way see {@link #outMapper(Function)} and {@link #inMapper(Function)}.
 *
 * <h2>Unchecked functionality</h2>
 * A mapper provides unchecked functionality for not generified methods via {@link #uncheckedOut(Object)},
 * {@link #uncheckedIn(Object)} and {@link #unchecked()} methods.
 * <p>Restricting unchecked functionality can be done by using {@link #restrictAClass(Class)}
 * and {@link #restrictBClass(Class)} methods.
 *
 * <h2>Instantiation</h2>
 * The following factory methods can be used for mapper instantiation:
 * <ul>
 *     <li>{@link #from(Function, Function)} - two ways mapper</li>
 *     <li>{@link #outMapper(Function)} - only-out mapper</li>
 *     <li>{@link #inMapper(Function)} - only-in mapper</li>
 * </ul>
 * <p>This interface can also be implemented from outside.
 *
 * @param <A> type parameter of adapted generic instance
 * @param <B> type parameter of generic adapter
 */
public interface Mapper<A, B> extends Function<A, B> {
    /**
     * Adapts return value of adapted instance method to adapter type.
     *
     * @param a result of calling adapted instance method
     * @return result which should be return from adapter
     * @implNote this method isn't supposed to be overridden, instead {@link #doOut(A)}
     * method should be implemented for defining mapper behaviour
     */
    @Contract("null -> null; !null -> !null")
    @Final
    default @Nullable B out(@Nullable A a) {
        return a == null ? null : doOut(a);
    }

    /**
     * Adapts input argument of adapter method to adapted instance type.
     *
     * @param b argument passed to adapter method
     * @return argument which should be passed to adapted instance
     * @implNote this method isn't supposed to be overridden, instead {@link #doIn(B)}
     * method should be implemented for defining mapper behaviour
     */
    @Contract("null -> null; !null -> !null")
    @Final
    default @Nullable A in(@Nullable B b) {
        return b == null ? null : doIn(b);
    }

    /**
     * Adapts return value of not generified adapted instance method to adapter type,
     * uses unchecked cast.
     *
     * @param a result of calling adapted instance method, is to have {@link A} type
     * @return result which should be return from adapter
     * @see #out(A)
     */
    @SuppressWarnings("unchecked") // unchecked is indicated in the method name
    @Contract("null -> null; !null -> !null")
    @Final
    default @Nullable B uncheckedOut(@Nullable Object a) {
        return out((A) a);
    }

    /**
     * Adapts input argument of not generified adapter method to adapted instance type,
     * uses unchecked cast.
     *
     * @param b argument passed to adapter method, is to have {@link B} type
     * @return argument which should be passed to adapted instance
     * @see #in(B)
     */
    @SuppressWarnings("unchecked") // unchecked is indicated in the method name
    @Contract("null -> null; !null -> !null")
    @Final
    default @Nullable A uncheckedIn(@Nullable Object b) {
        return in((B) b);
    }

    /**
     * Performs adapting of {@link A} to {@link B}.
     *
     * @param a input argument, mustn't be {@code null}
     * @return adaptation result, mustn't be {@code null}. If adaptation has failed {@link IllegalArgumentException}
     * should be thrown or null-object should be returned.
     * @apiNote this method isn't supposed to be called, instead {@link #out(A)} method should be used
     * @implNote this method is supposed to be implemented for defining {@link #out(A)} method behaviour
     * @see #out(A)
     */
    @NotNull B doOut(@NotNull A a);

    /**
     * Performs adapting of {@link B} to {@link A}.
     *
     * @param b input argument, mustn't be {@code null}
     * @return adaptation result, mustn't be {@code null}. If adaptation has failed {@link IllegalArgumentException}
     * should be thrown or null-object should be returned.
     * @apiNote this method isn't supposed to be called, instead {@link #in(B)} method should be used
     * @implNote this method is supposed to be implemented for defining {@link #in(B)} method behaviour
     * @see #in(B)
     */
    @NotNull A doIn(@NotNull B b);

    /**
     * Non-null analog of {@link #out(A)}.
     *
     * @param a input argument
     * @return mapping result
     * @apiNote {@code mapper::apply} shouldn't be used, instead mapper instance itself
     * should be used as a {@code Function<A, B>}
     */
    @Override
    default @NotNull B apply(@NotNull A a) {
        return out(a);
    }

    /**
     * Non-null analog of {@link #in(B)}.
     *
     * @param b input argument
     * @return mapping result
     * @apiNote {@code mapper::undo} shouldn't be used, instead {@link #reverse()}
     * should be used as a {@code Function<B, A>}
     */
    default @NotNull A undo(@NotNull B b) { return in(b); }

    /**
     * Returns reverse view of this mapper.
     * <p>Some mappers may perform reverse view caching, so it's likely that
     * {@code mapper.reverse() == mapper.reverse()} and {@code mapper.reverse().reverse() == mapper}
     * will be true.
     *
     * @return reverse view of this mapper
     */
    default Mapper<B, A> reverse() {
        return new Mapper<B, A>() {
            @Override
            public @NotNull A doOut(@NotNull B b) {
                return Mapper.this.doIn(b);
            }

            @Override
            public @NotNull B doIn(@NotNull A a) {
                return Mapper.this.doOut(a);
            }

            @Override
            public Mapper<A, B> reverse() {
                return Mapper.this;
            }
        };
    }

    /**
     * Returns this mapper after unchecked casting to required type.
     * <p>Should be used carefully: sometimes {@link #reverse()}{@code .unchecked()} is required instead
     * of {@code unchecked()}.
     *
     * @param <A2> {@link A} type parameter of returned mapper
     * @return this instance
     * @see #uncheckedIn(Object)
     * @see #uncheckedOut(Object)
     */
    @SuppressWarnings("unchecked") // unchecked is indicated in the method name
    @Contract(value = "-> this", pure = true)
    default <A2> Mapper<A2, B> unchecked() {
        return (Mapper<A2, B>) this;
    }

    @SuppressWarnings("unchecked") // unchecked is indicated in the method name
    default <A2, B2> Mapper<A2, B2> doubleUnchecked() {
        return (Mapper<A2, B2>) this;
    }

    /**
     * Creates a composed mapper from {@link V} to {@link B} which uses {@code before}
     * mapper and this mapper in order required by operations.
     *
     * @param <V>    the first type parameter of {@code before} mapper, and of the
     *               composed mapper
     * @param before the additional mapper
     * @return a composed mapper
     * @see #andThenMapper(Mapper)
     * @see #compose(Function)
     */
    @Contract(value = "_ -> new", pure = true)
    default <V> Mapper<V, B> composeMapper(Mapper<V, A> before) {
        return before.andThenMapper(this);
    }

    /**
     * Creates a composed mapper from {@link A} to {@link C} which uses this
     * mapper and {@code after} mapper in order required by operations.
     *
     * @param <C>   the second type parameter of {@code after} mapper, and of the
     *              composed mapper
     * @param after the additional mapper
     * @return a composed mapper
     * @see #composeMapper(Mapper)
     * @see #andThen(Function)
     */
    @Contract(value = "_ -> new", pure = true)
    default <C> Mapper<A, C> andThenMapper(Mapper<B, C> after) {
        return from(a -> after.out(out(a)), c -> in(after.in(c)));
    }

    /**
     * Creates mapper which restricts {@link A} class, so type of {@link #out(A)} operation parameter
     * is checked before performing operation.
     * <p>If parameter isn't an {@code instanceof clazz} {@link #uncheckedMap(Object)} is used.
     *
     * @param clazz {@link A} class
     * @return mapper which restricts {@link A} class
     * @see #restrictBClass(Class)
     */
    @Contract(value = "_ -> new", pure = true)
    default Mapper<A, B> restrictAClass(Class<A> clazz) {
        return from(a -> clazz.isAssignableFrom(a.getClass()) ? doOut(a) : uncheckedMap(a), this::doIn);
    }

    /**
     * Creates mapper which restricts {@link B} class, so type of {@link #in(B)} operation parameter
     * is checked before performing operation.
     * <p>If parameter isn't an {@code instanceof clazz} {@link #uncheckedMap(Object)} is used.
     *
     * @param clazz {@link B} class
     * @return mapper which restricts {@link B} class
     * @see #restrictAClass(Class)
     */
    @Contract(value = "_ -> new", pure = true)
    default Mapper<A, B> restrictBClass(Class<B> clazz) {
        return from(this::doOut, b -> clazz.isAssignableFrom(b.getClass()) ? doIn(b) : uncheckedMap(b));
    }

    /**
     * Creates mapper from given functions.
     *
     * @param out function for performing {@link #doOut(A)} method
     * @param in  function for performing {@link #doIn(B)} method
     * @param <A> returned mapper first type parameter
     * @param <B> returned mapper second type parameter
     * @return created mapper
     */
    @Contract(value = "_, _ -> new", pure = true)
    static <A, B> Mapper<A, B> from(Function<? super A, ? extends B> out, Function<? super B, ? extends A> in) {
        return new Mapper<A, B>() {
            private @Nullable Mapper<B, A> reverse = null;

            @Override
            public @NotNull B doOut(@NotNull A a) {
                return out.apply(a);
            }

            @Override
            public @NotNull A doIn(@NotNull B b) {
                return in.apply(b);
            }

            @Override
            public Mapper<B, A> reverse() {
                return (reverse == null) ? (reverse = Mapper.super.reverse()) : reverse;
            }
        };
    }

    /**
     * Creates mapper that can only normally perform {@link #out(A)} operation.
     *
     * <p>The returned mapper is bounded so {@link #in(B)} operation without using <i>unchecked functionality</i>
     * can only be called with {@code null} argument, according to the contract this will lead to
     * returning of {@code null}.
     *
     * @param out function for performing {@link #doOut(A)} method
     * @param <A> returned mapper first type parameter
     * @param <B> returned mapper second type parameter
     * @return mapper that only provides {@link #out(A)} operation
     */
    @Contract(value = "_ -> new", pure = true)
    static <A, B> Mapper<A, ? extends B> outMapper(Function<? super A, ? extends B> out) {
        return from(out, Mapper::uncheckedMap);
    }

    /**
     * Creates mapper that can only normally perform {@link #in(B)} operation.
     *
     * <p>The returned mapper is bounded so {@link #out(A)} result can be used only as {@link Object}.
     * <p>Returned mapper guarantees that {@code out(x) == x} will always be {@code true}.
     *
     * @param in  function for performing {@link #doIn(B)} method
     * @param <A> returned mapper first type parameter
     * @param <B> returned mapper second type parameter
     * @return mapper that only provides {@link #in(B)} operation
     */
    @Contract(value = "_ -> new", pure = true)
    static <A, B> Mapper<A, ? super B> inMapper(Function<? super B, ? extends A> in) {
        return from(Mapper::uncheckedMap, in);
    }

    /**
     * Creates mapper that maps any object to itself.
     *
     * @param <T> returned mapper type parameter
     * @return created mapper
     */
    @Contract(value = "-> new", pure = true)
    static <T> Mapper<T, T> identity() {
        return from(Function.identity(), Function.identity());
    }

    /**
     * Performs unchecked cast of input to required type,
     * this method may also do some logging.
     *
     * <p>This method is supposed to be used when impossible to call {@code Function<? extends A, B>} or
     * returning {@link Object} {@code Function<A, ? super B>} is needed.
     *
     * <p>In some cases it can also be called when {@code a} appeared to be not an {@code instanceof Class<A>}.
     *
     * @param a   input argument
     * @param <A> input argument type
     * @param <B> required type
     * @return result of unchecked cast
     * @deprecated unchecked cast
     */
    @SuppressWarnings({"Contract", "unchecked"}) // unchecked is indicated in the method name
    @Contract("_ -> param1")
    @Deprecated
    @WarnOnUse(exceptClasses = Mapper.class)
    static <A, B> B uncheckedMap(A a) {
        return (B) a;
    }
}

public class MappedSet<E, E2> extends MappedCollection<E, E2> implements Set<E2> {
    public MappedSet(Set<E> set, Mapper<E, E2> mapper) {
        super(set, mapper);
    }

    public static <E, E2> Set<E2> map(Set<E> inst, Mapper<E, E2> mapper) {
        return new MappedSet<>(inst, mapper);
    }

    public static <E, E2> Set<? extends E2> mapOut(Set<? extends E> inst, Function<? super E, ? extends E2> mapper) {
        return map(inst, Mapper.outMapper(mapper));
    }

    public static <E, E2> Set<? super E2> mapIn(Set<? super E> inst, Function<? super E2, ? extends E> mapper) {
        return map(inst, Mapper.inMapper(mapper));
    }
}

public class MappedCollection<E, E2> extends MappedIterable<E, E2> implements Collection<E2> {
    private final Collection<E> collection;
    private final Mapper<E, E2> mapper;

    public MappedCollection(Collection<E> collection, Mapper<E, E2> mapper) {
        super(collection, mapper);
        this.collection = collection;
        this.mapper = mapper;
    }

    public static <E, E2> Collection<E2> map(Collection<E> inst, Mapper<E, E2> mapper) {
        return new MappedCollection<>(inst, mapper);
    }

    public static <E, E2> Collection<? extends E2> mapOut(Collection<? extends E> inst, Function<? super E, ? extends E2> mapper) {
        return map(inst, Mapper.outMapper(mapper));
    }

    public static <E, E2> Collection<? super E2> mapIn(Collection<? super E> inst, Function<? super E2, ? extends E> mapper) {
        return map(inst, Mapper.inMapper(mapper));
    }

    @Override
    public int size() {
        return collection.size();
    }

    @Override
    public boolean isEmpty() {
        return collection.isEmpty();
    }

    @Override
    public boolean contains(Object o) {
        return collection.contains(mapper.uncheckedIn(o));
    }

    @Override
    public @NotNull Object[] toArray() {
        return MappedArray.map(collection.toArray(), mapper.unchecked());
    }

    @Override
    public @NotNull <T> T[] toArray(@NotNull T[] a) {
        return MappedArray.map(collection.toArray(), ContainersUtils.getComponentType(a), mapper.doubleUnchecked());
    }

    @Contract(mutates = "this")
    @Override
    public boolean add(@NotNull E2 e2) {
        return collection.add(mapper.in(e2));
    }

    @Contract(mutates = "this")
    @Override
    public boolean remove(Object o) {
        return collection.remove(mapper.uncheckedIn(o));
    }

    @Override
    public boolean containsAll(@NotNull Collection<?> c) {
        return collection.containsAll(map(c, mapper.reverse().unchecked()));
    }

    @Contract(mutates = "this")
    @Override
    public boolean addAll(@NotNull Collection<? extends E2> c) {
        return collection.addAll(mapOut(c, mapper.reverse()));
    }

    @Contract(mutates = "this")
    @Override
    public boolean removeAll(@NotNull Collection<?> c) {
        return collection.removeAll(map(c, mapper.reverse().unchecked()));
    }

    @Contract(mutates = "this")
    @Override
    public boolean retainAll(@NotNull Collection<?> c) {
        return collection.retainAll(map(c, mapper.reverse().unchecked()));
    }

    @Contract(mutates = "this")
    @Override
    public void clear() {
        collection.clear();
    }
}

@RequiredArgsConstructor
public class MappedIterable<E, E2> implements Iterable<E2> {
    private final @NotNull Iterable<E> iterable;
    private final @NotNull Function<? super E, ? extends E2> mapper;

    public static <E, E2> Iterator<E2> map(Iterator<E> inst, Function<? super E, ? extends E2> mapper) {
        return new MappedIterator<>(inst, mapper);
    }

    @Override
    public @NotNull Iterator<E2> iterator() {
        return MappedIterator.map(iterable.iterator(), mapper);
    }
}

@RequiredArgsConstructor
public class MappedIterator<E, E2> implements Iterator<E2> {
    private final @NotNull Iterator<E> iterator;
    private final @NotNull Function<? super E, ? extends E2> mapper;

    public static <E, E2> Iterator<E2> map(Iterator<E> inst, Function<? super E, ? extends E2> mapper) {
        return new MappedIterator<>(inst, mapper);
    }

    @Contract(pure = true)
    @Override
    public boolean hasNext() {
        return iterator.hasNext();
    }

    @Override
    public E2 next() {
        return mapper.apply(iterator.next());
    }
}

@UtilityClass
public class MappedArray {
    public static <T> Object[] map(T[] inst, Function<? super T, ?> mapper) {
        return Stream.of(inst).map(mapper).toArray();
    }

    public static <T, T2> T2[] map(T[] inst, Class<T2> clazz, Function<? super T, ? extends T2> mapper) {
        return Stream.of(inst).map(mapper).toArray(i -> ContainersUtils.createArray(clazz, i));
    }
}
...