Вот однозначное основанное на использовании вещания:
a = my_df.squeeze().to_numpy() # my_df.squeeze().values for versions 0.24.0.<
diff_mat = a - a[:,None]
result = (np.triu(diff_mat)>0).argmax(1) - np.arange(diff_mat.shape[1])
result[result <= 0] = 99999
print(result)
array([ 1, 2, 1, 3, 2, 1, 2, 1, 99999],
dtype=int64)
Где diff_mat
- матрица расстояний, и мы ищем значения из главной диагоналии далее, которые больше 0
:
array([[ 0, 1, 0, 3, 2, 1, 4, 3, 6],
[-1, 0, -1, 2, 1, 0, 3, 2, 5],
[ 0, 1, 0, 3, 2, 1, 4, 3, 6],
[-3, -2, -3, 0, -1, -2, 1, 0, 3],
[-2, -1, -2, 1, 0, -1, 2, 1, 4],
[-1, 0, -1, 2, 1, 0, 3, 2, 5],
[-4, -3, -4, -1, -2, -3, 0, -1, 2],
[-3, -2, -3, 0, -1, -2, 1, 0, 3],
[-6, -5, -6, -3, -4, -5, -2, -3, 0]], dtype=int64)
Для этого у нас есть np.triu
:
np.triu(diff_mat)
array([[ 0, 1, 0, 3, 2, 1, 4, 3, 6],
[ 0, 0, -1, 2, 1, 0, 3, 2, 5],
[ 0, 0, 0, 3, 2, 1, 4, 3, 6],
[ 0, 0, 0, 0, -1, -2, 1, 0, 3],
[ 0, 0, 0, 0, 0, -1, 2, 1, 4],
[ 0, 0, 0, 0, 0, 0, 3, 2, 5],
[ 0, 0, 0, 0, 0, 0, 0, -1, 2],
[ 0, 0, 0, 0, 0, 0, 0, 0, 3],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int64)
И проверяя, которые больше 0
, и принимаяargmax
логического значения ndarray
мы найдем первое значение больше 0
в каждой строке:
(np.triu(diff_mat)>0).argmax(1)
array([1, 3, 3, 6, 6, 6, 8, 8, 0], dtype=int64)
Нам нужно только вычесть соответствующее смещение из главной диагонали в начало