Мы можем указать names_pattern
library(tidyr)
library(dplyr)
df %>%
pivot_longer(cols = -c(ID, Code, Country),
names_to = c(".value", "group"),names_pattern = "(.*)\\.(.*)")
или использовать names_sep
с экранированием .
в соответствии с ?pivot_longer
names_sep -names_sep принимает ту же спецификацию, что и метод метод метод метод81 (ветвь), и может быть либо числовым вектором (задающим позиции для разбиения), либо отдельной строкой (задающей регулярное выражение для разбиения).
, что подразумеваетчто по умолчанию регулярное выражение равно для , а .
в регулярном выражении соответствует любому символу, а не буквальной точке. Чтобы получить буквальное значение, либо экранируйте его, либо поместите его в квадратную скобку
pivot_longer(df,
cols = -c(ID, Code, Country),
names_to = c(".value", "group"),
names_sep = "\\.")
# A tibble: 18 x 6
# ID Code Country group year value
# <int> <chr> <chr> <chr> <int> <dbl>
# 1 1 A USA x 2000 34.3
# 2 1 A USA y 2001 35.4
# 3 1 A USA z 2002 42.3
# 4 1 A Spain x 2000 34.7
# 5 1 A Spain y 2001 39.8
# 6 1 A Spain z 2002 43.2
# 7 3 B USA x 2000 36.0
# 8 3 B USA y 2001 37.7
# 9 3 B USA z 2002 44.4
#10 3 B Peru x 2000 33
#11 3 B Peru y 2001 37.7
#12 3 B Peru z 2002 41.3
#13 4 C Argentina x 2000 37.8
#14 4 C Argentina y 2001 39.3
#15 4 C Argentina z 2002 45.7
#16 4 C Peru x 2000 40.5
#17 4 C Peru y 2001 40.6
#18 4 C Peru z 2002 46.6
Обновление
Для обновленного набора данных
library(stringr)
df2 %>%
rename_at(vars(matches("year|value")), ~
str_replace(., "^([^.]+\\.[^.]+)\\.([^.]+)$", "\\1\\2")) %>%
pivot_longer(cols = -c(ID, Code, Country),
names_to = c(".value", "group"),names_pattern = "(.*)\\.(.*)")
Или без rename
,используйте регулярные выражения
df2 %>%
pivot_longer(cols = -c(ID, Code, Country),
names_to = c(".value", "group"),
names_sep = "(?<=year|value)\\.")
data
df <- structure(list(ID = c(1L, 1L, 3L, 3L, 4L, 4L), Code = c("A",
"A", "B", "B", "C", "C"), Country = c("USA", "Spain", "USA",
"Peru", "Argentina", "Peru"), year.x = c(2000L, 2000L, 2000L,
2000L, 2000L, 2000L), value.x = c(34.33422, 34.71842, 35.9818,
33, 37.78005, 40.52575), year.y = c(2001L, 2001L, 2001L, 2001L,
2001L, 2001L), value.y = c(35.35241, 39.82727, 37.70768, 37.66468,
39.25627, 40.55918), year.z = c(2002L, 2002L, 2002L, 2002L, 2002L,
2002L), value.z = c(42.30042, 43.22209, 44.40232, 41.30232, 45.72927,
46.62914)), class = "data.frame", row.names = c(NA, -6L))
df2 <- structure(list(ID = c(1L, 1L, 3L, 3L, 4L, 4L), Code = c("A",
"A", "B", "B", "C", "C"), Country = c("USA", "Spain", "USA",
"Peru", "Argentina", "Peru"), year.x = c(2000L, 2000L, 2000L,
2000L, 2000L, 2000L), value.x = c(34.33422, 34.71842, 35.9818,
33, 37.78005, 40.52575), year.y = c(2001L, 2001L, 2001L, 2001L,
2001L, 2001L), value.y = c(35.35241, 39.82727, 37.70768, 37.66468,
39.25627, 40.55918), year.x.x = c(2002L, 2002L, 2002L, 2002L,
2002L, 2002L), value.x.x = c(42.30042, 43.22209, 44.40232, 41.30232,
45.72927, 46.62914)), class = "data.frame", row.names = c(NA,
-6L))