После группировки по 'playerID', filter
все группы, имеющие как 'NYA', так и 'NYN' %in%
'teamID'
library(dplyr)
manager_tbl %>%
group_by(playerID) %>%
filter(all(c("NYA", "NYN") %in% teamID))
# A tibble: 69 x 35
# Groups: playerID [4]
# playerID yearID teamID lgID inseason G W L rank plyrMgr birthYear birthMonth birthDay birthCountry birthState birthCity deathYear deathMonth deathDay deathCountry deathState
# <chr> <int> <fct> <fct> <int> <int> <int> <int> <int> <fct> <int> <int> <int> <chr> <chr> <chr> <int> <int> <int> <chr> <chr>
# 1 stengca… 1934 BRO NL 1 153 71 81 6 N 1890 7 30 USA MO Kansas C… 1975 9 29 USA CA
# 2 stengca… 1935 BRO NL 1 154 70 83 5 N 1890 7 30 USA MO Kansas C… 1975 9 29 USA CA
# 3 stengca… 1936 BRO NL 1 156 67 87 7 N 1890 7 30 USA MO Kansas C… 1975 9 29 USA CA
# 4 stengca… 1938 BSN NL 1 153 77 75 5 N 1890 7 30 USA MO Kansas C… 1975 9 29 USA CA
# 5 stengca… 1939 BSN NL 1 152 63 88 7 N 1890 7 30 USA MO Kansas C… 1975 9 29 USA CA
# 6 stengca… 1940 BSN NL 1 152 65 87 7 N 1890 7 30 USA MO Kansas C… 1975 9 29 USA CA
# 7 stengca… 1941 BSN NL 1 156 62 92 7 N 1890 7 30 USA MO Kansas C… 1975 9 29 USA CA
# 8 stengca… 1942 BSN NL 1 150 59 89 7 N 1890 7 30 USA MO Kansas C… 1975 9 29 USA CA
# 9 stengca… 1943 BSN NL 2 107 47 60 6 N 1890 7 30 USA MO Kansas C… 1975 9 29 USA CA
#10 stengca… 1949 NYA AL 1 155 97 57 1 N 1890 7 30 USA MO Kansas C… 1975 9 29 USA CA
# … with 59 more rows, and 14 more variables: deathCity <chr>, nameFirst <chr>, nameLast <chr>, nameGiven <chr>, weight <int>, height <int>, bats <fct>, throws <fct>, debut <chr>,
# finalGame <chr>, retroID <chr>, bbrefID <chr>, deathDate <date>, birthDate <date>