Если ваш массив действительно только 1-й, вы можете сгладить его и сделать что-то вроде этого:
a=tf.constant(np.array([[0. ],
[0.9486833],
[1.8973666],
[2.8460498],
[0.9486833]], dtype=np.float32))
d = 0.1
flat_a = tf.reshape(a,[-1]) # flatten
a1 = tf.expand_dims(flat_a, 1)
a2 = tf.expand_dims(flat_a, 0)
distance_map = tf.math.abs(a1-a2)
too_small = tf.cast(tf.math.less(dist_map, d), tf.int32)
# 1 at indices i,j if the distance between elements at i and j is less than d, 0 otherwise
upper_triangular_part = tf.linalg.band_part(too_small, 0, -1) - tf.linalg.band_part(too_small, 0,0)
remove = tf.reduce_sum(upper_triangular_part, axis=0)
remove = tf.cast(tf.math.greater(remove, 0), tf.float32)
# 1. at indices where the element should be removed, 0. otherwise
output = flat_a - remove * flat_a
Вы можете получить доступ к индексам через тензор удаления. Если вам нужно дополнительное измерение, вы можете просто использовать tf.expand_dims в конце этого.