создать dataframe из списка списков data.frames - PullRequest
2 голосов
/ 28 октября 2019

У меня есть список списков data.frames, которые я хотел бы преобразовать в data.frame. Структура выглядит следующим образом:

l_of_lists <- list(
  year1 = list(
    one = data.frame(date = c("Jan-10", "Jan-22"), type = c("type 1", "type 2")),
    two = data.frame(date = c("Feb-1", "Feb-28"), type = c("type 2", "type 3")),
    three = data.frame(date = c("Mar-10", "Mar-15"), type = c("type 1", "type 4"))
    ),
  year2 = list( # dates is used here on purpose, as the names don't perfectly match
    one = data.frame(dates = c("Jan-22"), type = c("type 2"), another_col = c("entry 2")),
    two = data.frame(date = c("Feb-10", "Feb-18"), type = c("type 2", "type 3"), another_col = c("entry 2", "entry 3")),
    three = data.frame(date = c("Mar-10", "Mar-15"), type = c("type 1", "type 4"), another_col = c("entry 4", "entry 5"))
    ),
  year3 = list( # this deliberately only contains two data frames
    one = data.frame(date = c("Jan-10", "Jan-12"), type = c("type 1", "type 2")),
    two = data.frame(date = c("Feb-8", "Jan-28"), type = c("type 2", "type 3"))
  ))

Фрейм данных имеет две особенности, которые я пытался воспроизвести выше:

  • имена столбцов отличаются на 1-2 символа (например, dateпротив dates)
  • некоторые столбцы присутствуют только в некоторых фреймах данных (например, another_col)

Теперь я хотел бы преобразовать это в фрейм данных (я пыталсяразличные вызовы rbind, а также do.call, как описано, например, здесь безуспешно) и хотели бы - допустимо сопоставлять имена столбцов (если имена столбцов похожи на 1-2 символа, я хочу ихдля сопоставления и - заполните несуществующие столбцы NA в других столбцах.

Мне нужен кадр данных, подобный следующему

year  level       date        type  another_col                    
   1    one    "Jan-10"    "type 1"           NA
   1    one    "Jan-22"    "type 2"           NA
   1    two     "Feb-1"    "type 2"           NA
   1    two    "Feb-28"    "type 3"           NA
   1  three    "Mar-10"    "type 1"           NA
   1  three    "Mar-15"    "type 4"           NA
   2    one    "Jan-22"    "type 2"     "entry 2"
   2    two     "Feb-1"    "type 2"     "entry 2"
   2    two    "Feb-28"    "type 3"     "entry 3"
   2  three    "Mar-10"    "type 1"     "entry 4"
   2  three    "Mar-15"    "type 4"     "entry 5"
   3    one    "Jan-10"    "type 1"           NA
   3    one    "Jan-12"    "type 2"           NA
   3    two     "Feb-8"    "type 2"           NA
   3    two    "Feb-28"    "type 3"           NA

Может кто-нибудь указать, если rbindздесь правильный путь - и чего мне не хватает?

1 Ответ

3 голосов
/ 28 октября 2019

Вы можете сделать что-то вроде следующего, используя purrr и dplyr:

l_of_lists <- list(
  year1 = list(
    one = data.frame(date = c("Jan-10", "Jan-22"), type = c("type 1", "type 2")),
    two = data.frame(date = c("Feb-1", "Feb-28"), type = c("type 2", "type 3")),
    three = data.frame(date = c("Mar-10", "Mar-15"), type = c("type 1", "type 4"))
  ),
  year2 = list( # dates is used here on purpose, as the names don't perfectly match
    one = data.frame(dates = c("Jan-22"), type = c("type 2"), another_col = c("entry 2")),
    two = data.frame(date = c("Feb-10", "Feb-18"), type = c("type 2", "type 3"), another_col = c("entry 2", "entry 3")),
    three = data.frame(date = c("Mar-10", "Mar-15"), type = c("type 1", "type 4"), another_col = c("entry 4", "entry 5"))
  ),
  year3 = list( # this deliberately only contains two data frames
    one = data.frame(date = c("Jan-10", "Jan-12"), type = c("type 1", "type 2")),
    two = data.frame(date = c("Feb-8", "Jan-28"), type = c("type 2", "type 3"))
  ))

# add libraries
library(dplyr)
library(purrr)

# Map bind_rows to each list within the list
l_of_lists %>% 
  map_dfr(~bind_rows(.x, .id = "level"), .id = "year")

Это даст:

     year level   date   type  dates another_col
1  year1   one Jan-10 type 1   <NA>        <NA>
2  year1   one Jan-22 type 2   <NA>        <NA>
3  year1   two  Feb-1 type 2   <NA>        <NA>
4  year1   two Feb-28 type 3   <NA>        <NA>
5  year1 three Mar-10 type 1   <NA>        <NA>
6  year1 three Mar-15 type 4   <NA>        <NA>
7  year2   one   <NA> type 2 Jan-22     entry 2
8  year2   two Feb-10 type 2   <NA>     entry 2
9  year2   two Feb-18 type 3   <NA>     entry 3
10 year2 three Mar-10 type 1   <NA>     entry 4
11 year2 three Mar-15 type 4   <NA>     entry 5
12 year3   one Jan-10 type 1   <NA>        <NA>
13 year3   one Jan-12 type 2   <NA>        <NA>
14 year3   two  Feb-8 type 2   <NA>        <NA>
15 year3   two Jan-28 type 3   <NA>        <NA>

Тогда, конечно, вы можете выполнить некоторый анализ регулярных выражений, чтобы сохранить толькочисловой год:

l_of_lists %>% 
  map_dfr(~bind_rows(.x, .id = "level"), .id = "year") %>% 
  mutate(year = substring(year, regexpr("\\d", year)))

Если вы знаете, что дата и даты совпадают, вы всегда можете использовать mutate, чтобы изменить их на те значения, которые не пропущены (т. е. mutate(date = ifelse(!is.na(date), date, dates)))

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...