Я хочу, чтобы нечеткое совпадение одного столбца (бренды df2 $) со многими другими столбцами (df1 $ F6_1: f6_12), содержащих те же строки, с некоторыми небольшими орфографическими ошибками.
У меня есть два набора данных:
df1:
df1 <- structure(list(F6_1 = c("Braand1", "Brand2", "Brand3", "Brand4", "Brand4",
"Brand5", "Brand6", "Brand7", "Brand6", "Brand8"), F6_2 = c("Brand9",
"", "Brand4", "Brando6", "Brand6", "Brand8", "Brannd4", "Brandd8",
"Brand6", "Brand6"), F6_3 = c("Brand6", "", "Brand6",
"Brand10", "Brand10", "", "Brand8", "Brand10", "Brand8", "Brand3"
), F6_4 = c("", "", "Brand10", "", "Brand3", "", "Brand6", "Brand6",
"Bramd3", "BPand3"), F6_5 = c("", "", "", "", "Brand6",
"", "Brand1", "Brand1", "", "Brand1"), F6_6 = c("",
"", "", "", "Brand6", "", "Brand3", "", "", "Brand1"), F6_7 = c("",
"", "", "", "Brand1", "", "Brand1", "", "", "Brand1"), F6_8 = c("",
"", "", "", "Brand1", "", "", "", "", "Brand6"
), F6_9 = c("", "", "", "", "Brrandu3", "", "", "", "", ""), F6_10 = c("",
"", "", "", "Brand6", "", "", "", "", ""), F6_11 = c("",
"", "", "", "Brand6", "", "", "", "", ""), F6_12 = c("", "",
"", "", "Brand6", "", "", "", "", "")), row.names = c(NA, -10L), class = c("tbl_df",
"tbl", "data.frame"))
df2:
df2 <- structure(list(brands = c("Brand1", "Brand2", "Brand3", "Brand4", "Brand5",
"Brand6")), row.names = c(NA, -6L), class = c("tbl_df", "tbl",
"data.frame"))
Я попытался использовать функцию stringdist_left_join () из библиотеки fuzzyjoin, которая прекрасно работает.
library(tidyverse)
library(fuzzyjoin)
df1_F6_1 <- df1 %>% select(F6_1)
df2_F6_1 <- df2 %>% select(F6_1 = brands)
df_joined_F6_1 <- stringdist_left_join(df_F6_1, df2_F6_1, by = "F6_1", method = "soundex")
Это работает только для одного столбца. Однако я хочу сделать это в полном наборе данных df1. Эту проблему можно решить путем нечеткого соединения каждого столбца и, наконец, сложения их всех вместе. Но должен быть более простой и удобный способ сделать это.
Мой вывод должен выглядеть так:
df3 <- structure(list(F6_1 = c("Braand1", "Brand2", "Brand3", "Brand4",
"Brand4", "Brand5", "Brand6", "Brand7", "Brand6", "Brand8"),
F6_1_a = c("Brand1", "Brand2", "Brand3", "Brand4", "Brand4",
"Brand5", "Brand6", "Brand7", "Brand6", "Brand8"), F6_2 = c("Brand9",
NA, "Brand4", "Brando6", "Brand6", "Brand8", "Brannd4", "Brandd8",
"Brand6", "Brand6"), F6_2_a = c("Brand9", NA, "Brand4", "Brand6",
"Brand6", "Brand8", "Brand4", "Brand8", "Brand6", "Brand6"
), F6_3 = c("Brand6", NA, "Brand6", "Brand10", "Brand10",
"Brand8", "Brand8", "Brand10", "Brand8", "Brand3"), F6_3_a = c("Brand6",
NA, "Brand6", "Brand10", "Brand10", "Brand8", "Brand8", "Brand10",
"Brand8", "Brand3"), F6_4 = c(NA, NA, "Brand10", NA, "Brand3",
NA, "Brand6", "Brand6", "Bramd3", "BPand3"), F6_4_a = c(NA,
NA, "Brand10", NA, "Brand3", NA, "Brand6", "Brand6", "Brand3",
"Brand3"), F6_5 = c(NA, NA, NA, NA, "Brand6", NA, "Brand1",
"Brand1", NA, "Brand1"), F6_5_a = c(NA, NA, NA, NA, "Brand6",
NA, "Brand1", "Brand1", NA, "Brand1"), F6_6 = c(NA, NA, NA,
NA, "Brand6", NA, "Brand3", NA, NA, "Brand1"), F6_6_a = c(NA,
NA, NA, NA, "Brand6", NA, "Brand3", NA, NA, "Brand1"), F6_7 = c(NA,
NA, NA, NA, "Brand1", NA, "Brand1", NA, NA, "Brand1"), F6_7_a = c(NA,
NA, NA, NA, "Brand1", NA, "Brand1", NA, NA, "Brand1"), F6_8 = c(NA,
NA, NA, NA, "Brand1", NA, NA, NA, NA, "Brand6"), F6_8_a = c(NA,
NA, NA, NA, "Brand1", NA, NA, NA, NA, NA), F6_9 = c(NA, NA,
NA, NA, "Brrandu3", NA, NA, NA, NA, NA), F6_9_a = c(NA, NA,
NA, NA, "Brand3", NA, NA, NA, NA, NA), F6_10 = c(NA, NA,
NA, NA, "Brand6", NA, NA, NA, NA, NA), F6_10_a = c(NA, NA,
NA, NA, "Brand6", NA, NA, NA, NA, NA), F6_11 = c(NA, NA,
NA, NA, "Brand6", NA, NA, NA, NA, NA), F6_11_a = c(NA, NA,
NA, NA, "Brand6", NA, NA, NA, NA, NA), F6_12 = c(NA, NA,
NA, NA, "Brand6", NA, NA, NA, NA, NA), F6_12_a = c(NA, NA,
NA, NA, "Brand6", NA, NA, NA, NA, NA)), row.names = c(NA,
-10L), class = c("tbl_df", "tbl", "data.frame"))