from pyspark.sql.functions import concat
values = [('A','B','C','D'),('E','F','G','H'),('I','J','K','L')]
df = sqlContext.createDataFrame(values,['col1','col2','col3','col4'])
df.show()
+----+----+----+----+
|col1|col2|col3|col4|
+----+----+----+----+
| A| B| C| D|
| E| F| G| H|
| I| J| K| L|
+----+----+----+----+
req_column = ['col1','col2','col3','col4']
df = df.withColumn('concatenated_cols',concat(*req_column))
df.show()
+----+----+----+----+-----------------+
|col1|col2|col3|col4|concatenated_cols|
+----+----+----+----+-----------------+
| A| B| C| D| ABCD|
| E| F| G| H| EFGH|
| I| J| K| L| IJKL|
+----+----+----+----+-----------------+