У меня есть проблема в Python 3.7.3, когда моя многопроцессорная операция (с использованием Queue, Pool и apply_async) блокируется при обработке больших вычислительных задач.
Для небольших вычислений эта многопроцессорная задача отлично работает. Однако при работе с более крупными процессами многопроцессорная задача останавливается или блокируется вообще без выхода из процесса! Я читал, что это произойдет, если вы «увеличиваете свою очередь без границ, и вы присоединяетесь к подпроцессу, который ожидает места в очереди [...], ваш основной процесс останавливается, ожидая его завершения, и онникогда не буду."( Process.join () и очередь не работают с большими числами )
У меня проблемы с преобразованием этой концепции в код. Я был бы очень признателен за рекомендации по рефакторингу кода, который я написал ниже:
import multiprocessing as mp
def listener(q, d): # task to queue information into a manager dictionary
while True:
item_to_write = q.get()
if item_to_write == 'kill':
break
foo = d['region']
foo.add(item_to_write)
d['region'] = foo # add items and set to manager dictionary
def main():
manager = mp.Manager()
q = manager.Queue()
d = manager.dict()
d['region'] = set()
pool = mp.Pool(mp.cpu_count() + 2)
watcher = pool.apply_async(listener, (q, d))
jobs = []
for i in range(24):
job = pool.apply_async(execute_search, (q, d)) # task for multiprocessing
jobs.append(job)
for job in jobs:
job.get() # begin multiprocessing task
q.put('kill') # kill multiprocessing task (view listener function)
pool.close()
pool.join()
print('process complete')
if __name__ == '__main__':
main()
В конечном счете, я бы хотел полностью исключить взаимоблокировку, чтобы упростить многопроцессорную задачу, которая может выполняться бесконечно до завершения.
Внизу находится трассировка при выходе из DEADLOCK в BASH
^CTraceback (most recent call last):
File "multithread_search_cl_gamma.py", line 260, in <module>
main(GEOTAG)
File "multithread_search_cl_gamma.py", line 248, in main
job.get()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/pool.py", line 651, in get
Process ForkPoolWorker-28:
Process ForkPoolWorker-31:
Process ForkPoolWorker-30:
Process ForkPoolWorker-27:
Process ForkPoolWorker-29:
Process ForkPoolWorker-26:
self.wait(timeout)
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/pool.py", line 648, in wait
Traceback (most recent call last):
Traceback (most recent call last):
Traceback (most recent call last):
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/pool.py", line 110, in worker
task = get()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/pool.py", line 110, in worker
task = get()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/queues.py", line 351, in get
with self._rlock:
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/queues.py", line 351, in get
self._event.wait(timeout)
File "/Users/Ira/anaconda3/lib/python3.7/threading.py", line 552, in wait
Traceback (most recent call last):
Traceback (most recent call last):
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/pool.py", line 110, in worker
task = get()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/queues.py", line 352, in get
res = self._reader.recv_bytes()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/connection.py", line 216, in recv_bytes
buf = self._recv_bytes(maxlength)
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/connection.py", line 407, in _recv_bytes
buf = self._recv(4)
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/connection.py", line 379, in _recv
chunk = read(handle, remaining)
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/pool.py", line 110, in worker
task = get()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/queues.py", line 351, in get
with self._rlock:
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
KeyboardInterrupt
signaled = self._cond.wait(timeout)
File "/Users/Ira/anaconda3/lib/python3.7/threading.py", line 296, in wait
waiter.acquire()
KeyboardInterrupt
with self._rlock:
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
Traceback (most recent call last):
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/pool.py", line 110, in worker
task = get()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/queues.py", line 351, in get
with self._rlock:
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 297, in _bootstrap
self.run()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/process.py", line 99, in run
self._target(*self._args, **self._kwargs)
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/pool.py", line 110, in worker
task = get()
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/queues.py", line 351, in get
with self._rlock:
File "/Users/Ira/anaconda3/lib/python3.7/multiprocessing/synchronize.py", line 95, in __enter__
return self._semlock.__enter__()
KeyboardInterrupt
Ниже обновленный скрипт:
import multiprocessing as mp
import queue
def listener(q, d, stop_event):
while not stop_event.is_set():
try:
while True:
item_to_write = q.get(False)
if item_to_write == 'kill':
break
foo = d['region']
foo.add(item_to_write)
d['region'] = foo
except queue.Empty:
pass
time.sleep(0.5)
if not q.empty():
continue
def main():
manager = mp.Manager()
stop_event = manager.Event()
q = manager.Queue()
d = manager.dict()
d['region'] = set()
pool = mp.get_context("spawn").Pool(mp.cpu_count() + 2)
watcher = pool.apply_async(listener, (q, d, stop_event))
stop_event.set()
jobs = []
for i in range(24):
job = pool.apply_async(execute_search, (q, d))
jobs.append(job)
for job in jobs:
job.get()
q.put('kill')
pool.close()
pool.join()
print('process complete')
if __name__ == '__main__':
main()
UPDATE ::
execute_command
выполняет несколькопроцессы, необходимые для поиска, поэтому я вставляю код для q.put()
.
В одиночку выполнение сценария займет> 72 часа. Каждый мультипроцесс никогда не завершает всю задачу, скорее, они работают индивидуально и ссылаются на manager.dict()
, чтобы избежать повторения задач. Эти задачи работают до тех пор, пока не будет обработан каждый кортеж в manager.dict()
.
def area(self, tup, housing_dict, q):
state, reg, sub_reg = tup[0], tup[1], tup[2]
for cat in housing_dict:
"""
computationally expensive, takes > 72 hours
for a list of 512 tup(s)
"""
result = self.search_geotag(
state, reg, cat, area=sub_reg
)
q.put(tup)
В конечном итоге q.put(tup)
помещается в функцию listener
для добавления tup
к manager.dict()