данные не найдены ошибка в дифференциальной эволюционной функции - PullRequest
0 голосов
/ 20 ноября 2019

Я использую следующий код, и он выдает ошибку в последней строке: данные обучения (в моем случае это "tr") и train_settings не найдены.

Значение класса является непрерывным, поэтому используемая целевая функция в этом случае RMSE.

Код выглядит следующим образом:

  d=readARFF("dset.arff")
  index <- createDataPartition(d$Effort, p = .70,list = FALSE)
    tr <- d[index, ]
    ts <- d[-index, ] 

    train_settings <- trainControl(method = "repeatedcv", repeats = 3)

    # Set parameter settings for search algorithm
    max_iter <- 10 # maximum number of iterations
    pop_size <- 10 # population size

    eval_function_XGBoost_Linear <- function(x, data, train_settings) {

      x1 <- x[1]; x2 <- x[2]; x3 <- x[3]; x4 <- x[4]

      suppressWarnings(
        XGBoost_Linear_model <- caret::train(Effort ~., 
                                             data = tr,
                                             method = "xgbLinear",
                                             trControl = train_settings,
                                             verbose = FALSE, 
                                             silent = 1,
                                             tuneGrid = expand.grid(
                                               nrounds = round(x1), # number of boosting iterations
                                               eta = 10^x2, # learning rate, low value means model is more robust to overfitting
                                               alpha = 10^x3, # L1 Regularization (equivalent to Lasso Regression) on weights
                                               lambda = 10^x4 # L2 Regularization (equivalent to ridge Regression) on weights
                                             ) 
        )
      )

      return(XGBoost_Linear_model$results$RMSE) # minimize RMSE

    }

    # Define minimum and maximum values for each input
    nrounds_min_max <- c(10,10^3)
    eta_min_max <- c(-5,3)
    alpha_min_max <- c(-3,1)
    lambda_min_max <- c(-3,1)




    DE_model_XGBoost_Linear <- DEoptim::DEoptim(
      fn = eval_function_XGBoost_Linear, 
      lower = c(nrounds_min_max[1], eta_min_max[1], alpha_min_max[1], lambda_min_max[1]),
      upper = c(nrounds_min_max[2], eta_min_max[2], alpha_min_max[2], lambda_min_max[2]), 
      control = DEoptim.control(
        NP = pop_size, # population size
        itermax = max_iter, # maximum number of iterations
        CR = 0.5, # probability of crossover
        storepopfreq = 1, # store every population
        parallelType = 1 # run parallel processing
      ),
      data = tr,
      train_settings = trControl
    )
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...