Одно решение:
>>> import numpy as np
>>>
>>> xx = [[6.18167195e-02,-3.20902583e-01,7.96803103e+00,5.69096614e+00,6.82949858e+00],
... [1.14139479e-02,-2.93352490e-02,5.17031336e+00,2.50552347e+01,1.51127740e+01],
... [8.84761009e-03,-2.93352490e-02,1.84764173e+01,2.50552347e+01,2.17658260e+01],
... [1.96567549e-03,-2.93352490e-02,8.18878876e+01,2.50552347e+01,5.34715612e+01],
... [3.54827629e-0,-1.88511194e+00,4.70728062e-01,1.95791971e-01,3.33260017e-01],
... [3.53146766e-01,-1.88511194e+00,9.42210619e-01,1.95791971e-01,5.69001295e-01],
... [6.64244146e-02,-3.20902583e-01,1.10815151e+00,5.69096614e+00,3.39955882e+00],
... [6.18167195e-02,-3.20902583e-01,7.96803103e+00,5.69096614e+00,6.82949858e+00],
... [1.95005819e-02,-1.40482917e-01,2.64188251e+00,1.63546768e+00,2.13867510e+00]]
>>>
>>> xx = np.asarray(xx)
>>>
>>> def MinRow(array):
... low = np.min(array[:,4])
... for idx, el in enumerate(array):
... if el[-1] <= low:
... index = idx
... newarray = array[index, :]
... return newarray
...
>>> xx2 = MinRow(xx)
>>> print(xx2)
[ 3.54827629 -1.88511194 0.47072806 0.19579197 0.33326002]
Чистое решение Numpy:
>>> import numpy as np
>>>
>>> xx = [[6.18167195e-02,-3.20902583e-01,7.96803103e+00,5.69096614e+00,6.82949858e+00],
... [1.14139479e-02,-2.93352490e-02,5.17031336e+00,2.50552347e+01,1.51127740e+01],
... [8.84761009e-03,-2.93352490e-02,1.84764173e+01,2.50552347e+01,2.17658260e+01],
... [1.96567549e-03,-2.93352490e-02,8.18878876e+01,2.50552347e+01,5.34715612e+01],
... [3.54827629e-0,-1.88511194e+00,4.70728062e-01,1.95791971e-01,3.33260017e-01],
... [3.53146766e-01,-1.88511194e+00,9.42210619e-01,1.95791971e-01,5.69001295e-01],
... [6.64244146e-02,-3.20902583e-01,1.10815151e+00,5.69096614e+00,3.39955882e+00],
... [6.18167195e-02,-3.20902583e-01,7.96803103e+00,5.69096614e+00,6.82949858e+00],
... [1.95005819e-02,-1.40482917e-01,2.64188251e+00,1.63546768e+00,2.13867510e+00]]
>>>
>>> xx = np.asarray(xx)
>>> idx = np.where(xx[:,4]==np.min(xx[:,4]))
>>> xx2 = xx[idx]
>>> print(xx2)
[[ 3.54827629 -1.88511194 0.47072806 0.19579197 0.33326002]]