Я построил модель, используя следующий код:
from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating
model1 = ALS.train(ratings=ratingsR, rank=model_params['rank'], \
iterations=model_params['iterations'], lambda_=model_params['lambda'], \
blocks=model_params['blocks'], nonnegative=model_params['nonnegative'], \
seed=model_params['seed'])
Теперь я хочу прогнозировать кампании для всех пользователей (или подмножество пользователей), используя распределенную среду, предоставляемую spark.
Я попробовал recommendProductsForUsers
, что требует от меня 32M Users X 4000 продуктов.
preds = model1.recommendProductsForUsers(num=4000)
Мне действительно не нужны рекомендации для всех 32M пользователей. У меня тоже все в порядке с 100k-200k.
Итак, чтобы изменить свой процесс, я попробовал способ обработки в формате spark udf для каждого пользователя по одному, но с использованием механизма распределения кластера spark:
import pyspark.sql.functions as F
def udf_preds(sameModel):
return F.udf(lambda x: get_predictions(x, sameModel))
def get_predictions(x, sameModel):
preds = sameModel.recommendProducts(user=x, num=4000) # per user it takes around 4s
return preds
test.withColumn('predictions', udf_preds(model1)(F.col('user_id')))
Тест содержит около 200 000 пользователей. Вышеприведенная ошибка завершается следующей ошибкой:
PicklingError: Не удалось сериализовать объект: Исключение: создается впечатление, что вы пытаетесь сослаться на SparkContext из широковещательной переменной, действия или преобразования. SparkContext может использоваться только в драйвере, а не в коде, который он запускает на рабочих. Для получения дополнительной информации см. SPARK-5063.
Как лучше выполнить рекомендации для подмножества пользователей?
(РЕДАКТИРОВАТЬ)
Из ответа @ piscall. Я пытался сделать то же самое, используя RDD.
preds_rdd = test.rdd.map(lambda x: (x.user_id, sameModel.recommendProducts(x.user_id, 4000)))
preds_rdd.take(2)
File "/usr/hdp/current/spark2-client/python/pyspark/context.py", line 330, in __getnewargs__
"It appears that you are attempting to reference SparkContext from a broadcast "
Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.
PicklingErrorTraceback (most recent call last)
<ipython-input-17-e114800a26e7> in <module>()
----> 1 preds_rdd.take(2)
/usr/hdp/current/spark2-client/python/pyspark/rdd.py in take(self, num)
1356
1357 p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts))
-> 1358 res = self.context.runJob(self, takeUpToNumLeft, p)
1359
1360 items += res
/usr/hdp/current/spark2-client/python/pyspark/context.py in runJob(self, rdd, partitionFunc, partitions, allowLocal)
1038 # SparkContext#runJob.
1039 mappedRDD = rdd.mapPartitions(partitionFunc)
-> 1040 sock_info = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
1041 return list(_load_from_socket(sock_info, mappedRDD._jrdd_deserializer))
1042
/usr/hdp/current/spark2-client/python/pyspark/rdd.py in _jrdd(self)
2470
2471 wrapped_func = _wrap_function(self.ctx, self.func, self._prev_jrdd_deserializer,
-> 2472 self._jrdd_deserializer, profiler)
2473 python_rdd = self.ctx._jvm.PythonRDD(self._prev_jrdd.rdd(), wrapped_func,
2474 self.preservesPartitioning)
/usr/hdp/current/spark2-client/python/pyspark/rdd.py in _wrap_function(sc, func, deserializer, serializer, profiler)
2403 assert serializer, "serializer should not be empty"
2404 command = (func, profiler, deserializer, serializer)
-> 2405 pickled_command, broadcast_vars, env, includes = _prepare_for_python_RDD(sc, command)
2406 return sc._jvm.PythonFunction(bytearray(pickled_command), env, includes, sc.pythonExec,
2407 sc.pythonVer, broadcast_vars, sc._javaAccumulator)
/usr/hdp/current/spark2-client/python/pyspark/rdd.py in _prepare_for_python_RDD(sc, command)
2389 # the serialized command will be compressed by broadcast
2390 ser = CloudPickleSerializer()
-> 2391 pickled_command = ser.dumps(command)
2392 if len(pickled_command) > (1 << 20): # 1M
2393 # The broadcast will have same life cycle as created PythonRDD
/usr/hdp/current/spark2-client/python/pyspark/serializers.py in dumps(self, obj)
573
574 def dumps(self, obj):
--> 575 return cloudpickle.dumps(obj, 2)
576
577
/usr/hdp/current/spark2-client/python/pyspark/cloudpickle.py in dumps(obj, protocol)
916
917 cp = CloudPickler(file,protocol)
--> 918 cp.dump(obj)
919
920 return file.getvalue()
/u
I have built a model using the below code:
from pyspark.mllib.recommendation import ALS, MatrixFactorizationModel, Rating
sr/hdp/current/spark2-client/python/pyspark/cloudpickle.py in dump(self, obj)
247 msg = "Could not serialize object: %s: %s" % (e.__class__.__name__, emsg)
248 print_exec(sys.stderr)
--> 249 raise pickle.PicklingError(msg)
250
251
PicklingError: Could not serialize object: Exception: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transformation. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.