Почему стрелки трехмерного сюжета колчана указывают неверно? - PullRequest
2 голосов
/ 23 декабря 2019

Я работал над моделированием магнитных полей для исследований. Код ниже позволяет мне вычислить правильные значения поля для любой заданной точки (x, y, z) ;однако, когда я пропускаю np.meshgrid объект через код, результаты начинают становиться неубедительными.

Это мой код:

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d


def normal_vector(u):
    return u/np.linalg.norm(u)
class Path:
    """
    This defines the Path class which allows for the calculations of the magnetic field.
    """

    def __init__(self, xs, ys, zs):
        self.points = zip(*[xs, ys, zs])  # defines the points
        self.x = xs
        self.y = ys
        self.z = zs
        self.path_vectors = [(self.points[i + 1][0] - self.points[i][0],
                              self.points[i + 1][1] - self.points[i][1],
                              self.points[i + 1][2] - self.points[i][2]) for i in range(len(self.x) - 1)]
    def get_length(self):
        """
        Calculates the path length
        :return: returns float length
        """
        return sum([np.sqrt(((self.x[i + 1] - self.x[i]) ** 2) + ((self.y[i + 1] - self.y[i]) ** 2) + (
                (self.z[i + 1] - self.z[i]) ** 2)) for i in
                    range(len(self.x) - 1)])

    def get_magnetlic_function(self,axes,current=1.0,magnetic_constant = 1.25663706212e-6):
        magnetic_parameter = (current*magnetic_constant)/(4*np.pi)
        field_function = lambda x,y,z: sum([magnetic_parameter*np.cross(self.path_vectors[j],normal_vector(np.stack([x-self.x[j],y-self.y[j],z-self.z[j]],axis=-1)))/(np.linalg.norm(np.stack([x-self.x[j],y-self.y[j],z-self.z[j]],axis=-1))**2) for j in range(len(self.x)-1)]).swapaxes(0,-1)
        return field_function

n = 200
r = 1
h = 5
grid_x,grid_y,grid_z = np.meshgrid(np.linspace(-10,10,5),
                    np.linspace(-10,10,5),
                    np.linspace(-10,10,5))
c = h / (2 * n * np.pi)
t = np.linspace(0,2*np.pi, 5000)
xp = 3*np.cos(t)
yp = 3*np.sin(t)
zp = 0*t
p = Path(list(xp), list(yp), list(zp))
func = p.get_magnetlic_function([grid_x,grid_y,grid_z])
u,v,w = func(grid_x,grid_y,grid_z)
r = np.sqrt(u**2+v**2+w**2)
print func(-10.0,00.0,0.0)
ax1 = plt.subplot(111,projection='3d')
ax1.plot(xp,yp,zp,'r-')
ax1.plot([-10],[0],[0],'ro')
ax1.quiver(grid_x,grid_y,grid_z,u/r,v/r,w/r,length=1)
plt.show()

Как видно внизу, есливыполняется код, направление вектора при -10.0,00.0,0.0 не совпадает со значением, которое выводится на печать. Почему? Из кода я получаю график колчана здесь: My code.

Он должен выглядеть так: enter image description here

1 Ответ

1 голос
/ 26 декабря 2019

При попытке найти магнитное поле, вызванное распределением тока, я нахожу, что гораздо проще рассмотреть парные взаимодействия (хотя функция lambda гораздо более питонна). Рассмотрим этот подход

class Path:
    # ...
    def mag_func(self, x, y, z, current = 1.0, mag_const = 1.25663706212e-6):
        mag_param = current * mag_const / (4 * np.pi)
        s = x.shape
        res = np.zeros((s[0],s[1],s[2],3))
        for i in range(s[0]):
            for j in range(s[1]):
                for k in range(s[2]):
                    for idx, (xc, yc, zc) in enumerate(zip(self.x, self.y, self.z)):
                        res[i,j,k,:] += mag_param * \
                                np.cross(self.path_vectors[idx], [x[i,j,k] - xc,
                                         y[i,j,k] - yc, z[i,j,k] - zc]) / \
                                np.linalg.norm([x[i,j,k] - xc, y[i,j,k] - yc, 
                                              z[i,j,k] - zc])**2
        return res[:,:,:,0], res[:,:,:,1], res[:,:,:,2]
#...
u, v, w = p.mag_func(grid_x, grid_y, grid_z)
r = np.sqrt(u**2+v**2+w**2)
ax1 = plt.subplot(111,projection='3d')
ax1.plot(xp, yp, zp, 'r-')
ax1.quiver(grid_x, grid_y, grid_z, u/r, v/r, w/r,length=1)
plt.show()

, который даст

enter image description here

, который является правильным представлением магнитного поля, окружающего токонесущий провод.

Что касается вопроса о том, почему lambda не работает в первую очередь, я думаю, что это связано с созданием сетки через np.meshgrid таким образом, чтобы внешний sum суммировалбольше очков, чем следовало бы. Повторение вышеописанным способом устраняет эту проблему. Можно было бы использовать эту функцию lambda, но я думаю, что вам все равно придется перебирать grid_x, grid_y и grid_z в указанном порядке.

...