3 дня назад я нашел в Интернете коды по методам классификации, используя наивную байесовскую классификацию. этот код успешно работает. Теперь я хочу добавить код матрицы путаницы, используя библиотеку sklearn. это весь код
import csv
import random
import math
import pandas as pd
from matplotlib.pylab import plt
from sklearn.metrics import confusion_matrix
def loadCsv(filename):
lines = csv.reader(open("E:\KULIAH\TUGAS AKHIR\MachineLearning\kananniih.csv"))
dataset = list(lines)
for i in range(len(dataset)):
dataset[i] = [float(x) for x in dataset[i]]
print("ini dataset")
print(dataset[i])
return dataset
def splitDataset(dataset, splitRatio):
trainSize = int(len(dataset) * splitRatio)
trainSet = []
copy = list(dataset)
print("ini trainSize")
print(trainSize)
print("ini trainset")
print(trainSet)
print("ini copy")
print(copy)
while len(trainSet) < trainSize:
index = random.randrange(len(copy))
trainSet.append(copy.pop(index))
#nilai apaa itu dirandom, untuk trainset dan copy
apaa = [trainSet, copy]
print("index")
print(index)
print("copy")
print(copy)
print("apa")
print(apaa)
return apaa
def separateByClass(dataset):
separated = {}
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
#hitung mean
def mean(numbers):
haha = sum(numbers) / float(len(numbers))
print("haha")
print(haha)
print("len numbers")
print(len(numbers))
return haha
#return sum(numbers) / float(len(numbers))
def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x - avg, 2) for x in numbers]) / float(len(numbers) - 1)
print("------------------------------------------")
print("nilai varian")
print(variance)
print("----------------------------------")
print("numbers")
print(numbers)
return math.sqrt(variance)
def summarize(dataset):
summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)]
del summaries[-1]
return summaries
def summarizeByClass(dataset):
separated = separateByClass(dataset)
summaries = {}
for classValue, instances in separated.items():
summaries[classValue] = summarize(instances)
return summaries
def calculateProbability(x, mean, stdev):
#rumus gauss
exponent = math.exp(-(math.pow(x - mean, 2) / (2 * math.pow(stdev, 2))))
prob = (1 / (math.sqrt(2 * math.pi) * stdev)) * exponent
print("-------------exponent---------------")
print(exponent)
print("--------------probability---------------")
print(prob)
return prob
def calculateClassProbabilities(summaries, inputVector):
probabilities = {}
for classValue, classSummaries in summaries.items():
probabilities[classValue] = 1
for i in range(len(classSummaries)):
mean, stdev = classSummaries[i]
x = inputVector[i]
print("-----nilai x-----------")
print(x)
probabilities[classValue] *= calculateProbability(x, mean, stdev)
return probabilities
def predict(summaries, inputVector):
probabilities = calculateClassProbabilities(summaries, inputVector)
bestLabel, bestProb = None, -1
for classValue, probability in probabilities.items():
if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classValue
return bestLabel
def getPredictions(summaries, testSet):
predictions = []
for i in range(len(testSet)):
result = predict(summaries, testSet[i])
predictions.append(result)
return predictions
def getAccuracy(testSet, predictions):
correct = 0
for i in range(len(testSet)):
if testSet[i][-1] == predictions[i]:
correct += 1
precent = (correct / float(len(testSet))) * 100.0
#Confusion Matrix
hasile = confusion_matrix(testSet, correct)
#print
print("Test set: %s" % testSet)
print("Predicted : %s" % correct)
print("accuracy : %s" % precent)
print("Result : %s" % hasile)
return precent
def main():
filename = 'E:\KULIAH\TUGAS AKHIR\MachineLearning\kananniih.csv'
splitRatio = 0.6
dataset = loadCsv(filename)
trainingSet, testSet = splitDataset(dataset, splitRatio)
print(('Split {0} rows into train={1} and test={2} rows').format(len(dataset), len(trainingSet), len(testSet)))
# prepare model
summaries = summarizeByClass(trainingSet)
# test model
predictions = getPredictions(summaries, testSet)
accuracy = getAccuracy(testSet, predictions)
#akurasi
print(('Accuracy: {0}%').format(accuracy))
main()
в этой части я пишу код матрицы путаницы, но есть некоторая ошибка, я с этим путался.
def getAccuracy(testSet, predictions):
correct = 0
for i in range(len(testSet)):
if testSet[i][-1] == predictions[i]:
correct += 1
precent = (correct / float(len(testSet))) * 100.0
#Confusion Matrix
hasile = confusion_matrix(testSet, predictions)
#print
print("Test set: %s" % testSet)
print("Predicted : %s" % predictions)
print("accuracy : %s" % precent)
print("Result : %s" % hasile)
return precent
Не могли бы вы, ребята, помочь мне, пожалуйста? Очень ценю это! С наилучшими пожеланиями, Элия