Я абсолютный новичок в кодировании. Существует система рекомендаций для книг, но я хочу внести небольшое изменение здесь. В настоящее время программа рекомендует похожие книги после получения идентификатора книги от пользователя, но я хочу, чтобы в качестве ввода от пользователя принимался заголовок книги и находил похожие заголовки после сравнения ввода пользователя с заголовками в файле csv. Любое пошаговое руководство о том, как работает код, также будет оценено :). Вот код
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
ds = pd.read_csv("test1.csv")
tf = TfidfVectorizer(analyzer='word', ngram_range=(1, 3), min_df=0, stop_words='english')
tfidf_matrix = tf.fit_transform(ds['Book Title'])
cosine_similarities = cosine_similarity(tfidf_matrix,tfidf_matrix)
results = {} # dictionary created to store the result in a dictionary format (ID : (Score,item_id))
for idx, row in ds.iterrows(): #iterates through all the rows
# the below code 'similar_indice' stores similar ids based on cosine similarity. sorts them in ascending order. [:-5:-1] is then used so that the indices with most similarity are got. 0 means no similarity and 1 means perfect similarity
similar_indices = cosine_similarities[idx].argsort()[:-5:-1] #stores 5 most similar books, you can change it as per your needs
similar_items = [(cosine_similarities[idx][i], ds['ID'][i]) for i in similar_indices]
results[row['ID']] = similar_items[1:]
#below code 'function item(id)' returns a row matching the id along with Book Title. Initially it is a dataframe, then we convert it to a list
def item(id):
return ds.loc[ds['ID'] == id]['Book Title'].tolist()[0]
def recommend(id, num):
if (num == 0):
print("Unable to recommend any book as you have not chosen the number of book to be recommended")
elif (num==1):
print("Recommending " + str(num) + " book similar to " + item(id))
else :
print("Recommending " + str(num) + " books similar to " + item(id))
print("----------------------------------------------------------")
recs = results[id][:num]
for rec in recs:
print("You may also like to read: " + item(rec[1]) + " (score:" + str(rec[0]) + ")")
#the first argument in the below function to be passed is the id of the book, second argument is the number of books you want to be recommended
recommend(5,2)