Это не использует отрицательное индексирование вашей исходной функции, но, возвращая массивы, вы можете использовать нормальное индексирование для отображения значений
def weirdMath():
nrows = 64
ncolumns = 16384
fk = np.fft.fftfreq(nrows)
fq = np.fft.fftfreq(ncolumns)
S = np.random.random(size=(nrows,ncolumns)) + 1j*np.random.random(size=(nrows,ncolumns))
fi = .5*fk[:,np.newaxis] - fq
alphaj = fk[:,np.newaxis] + fq
return fi, alphaj, S
>>> f1,a1=weirdMath()
>>> f1.size
1048576
>>> f1[32,:10]
array([ 0.25 , 0.24993896, 0.24987793, 0.24981689, 0.24975586,
0.24969482, 0.24963379, 0.24957275, 0.24951172, 0.24945068])
Доказательство с добавлением вращения осей для соответствия порядку вывода в исходном коде , Примечание: S был изменен на np.arange (), чтобы сравнение значений между функциями могло быть напрямую сопоставлено:
def origCode():
nrows = 64
ncolumns = 16384
fk = np.fft.fftfreq(nrows)
fq = np.fft.fftfreq(ncolumns)
# using random numbers here to simplify the example
# in practice S is the result of several FFTs and complex multiplications
#S = np.random.random(size=(nrows,ncolumns)) + 1j*np.random.random(size=(nrows,ncolumns))
S = np.arange(nrows*ncolumns).reshape(nrows, ncolumns)
fi = []
alphaj = []
Z = []
for k in range(-nrows//2,nrows//2):
for q in range(-ncolumns//2,ncolumns//2):
fi.append(0.5*fk[k] - fq[q])
alphaj.append(fk[k] + fq[q])
Z.append(S[k,q])
return fi, alphaj,Z
def weirdMathWithRoll():
nrows = 64
ncolumns = 16384
rowRollAdj = nrows%2
colRollAdj = ncolumns%2
fk = np.roll(np.fft.fftfreq(nrows), shift=(-nrows//2) + rowRollAdj, axis=0)
fq = np.roll(np.fft.fftfreq(ncolumns), (-ncolumns//2) + colRollAdj)
S = np.random.random(size=(nrows,ncolumns)) + 1j*np.random.random(size=(nrows,ncolumns))
S = np.arange(nrows*ncolumns).reshape(nrows, ncolumns)
s2 = np.roll(S,ncolumns//2 + colRollAdj, axis=1)
s3 = np.roll(s2,nrows//2 + rowRollAdj, axis=0)
fi = .5*fk[:,np.newaxis] - fq
alphaj = fk[:,np.newaxis] + fq
return fi, alphaj, s3
def testMath():
f,a,z = origCode()
f1,a1,s1 = weirdMathWithRoll()
fMatch = f==f1.flatten()
aMatch = a==a1.flatten()
sMatch = z==s1.flatten()
return (np.all(fMatch), np.all(aMatch), np.all(sMatch))
Вывод доказательства:
>>> testMath()
(True, True, True)
Улучшение производительности:
>>> timeit.timeit(origCode, number = 1)
0.984715332997439
>>> timeit.timeit(weirdMathWithRoll, number = 1)
0.051891374998376705