Не могу распечатать вывод нейронной сети в тензорном потоке - PullRequest
0 голосов
/ 06 января 2020
import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior


class DQNagent:

    def __init__(self, session, structure, input_dim, output_dim):
        self.session = session
        self.structure = structure
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.input_vec = tf.placeholder(tf.float32, shape=[None, self.input_dim])
        self.network = self.create_model()

    def create_model(self):

        for i in range(0, len(self.structure)-1):
            if i == 0:
                network = tf.layers.Dense(self.structure[i], tf.keras.activations.relu)(self.input_vec)
                network = tf.layers.BatchNormalization()(network)
            else:
                network = tf.layers.Dense(self.structure[i], tf.keras.activations.relu)(network)
                network = tf.layers.BatchNormalization()(network)

        network = tf.layers.Dense(self.output_dim, tf.keras.activations.linear)(network)

        return network

    def temp_func(self, input_data):
        temp_input_data = np.expand_dims(input_data, 0)
        output_vec = self.session.run(self.network, feed_dict={self.input_vec: temp_input_data})
        print(output_vec)

Итак, для приведенного выше кода я реализовал простой, последовательный, полностью подключенный NN, и temp_fun c предназначен для печати выходных данных NN с использованием массива np

Так что я протестировал его создав искусственный пример с массивом np через

data = []
for _ in range(10):
    data.append(np.random.normal(0.0,1.0))

NNstructure = []
for _ in range(2):
    NNstructure.append(10)

Таким образом, NNstructure [i] представляет количество нейронов на i-м слое. Затем я создал сеанс,

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    dqn = DQNagent(sess, NNstructure, len(data), 5)
    dqn.temp_func(data)

и теоретически, он должен распечатать выходные данные NN с этими искусственно сгенерированными «данными», и если я кодирую все это без использования концепции классов, он работает хорошо.

Я получаю сообщение об ошибке:

tensorflow.python.framework.errors_impl.FailedPreconditionError: Attempting to use uninitialized value dense_1/kernel
 [[{{node dense_1/kernel/read}}]]

1 Ответ

1 голос
/ 06 января 2020

Вы создаете свои переменные после инициализации переменной (так что ничего не инициализируется). Необходимо изменить порядок следующих строк.

sess.run(tf.global_variables_initializer())
dqn = DQNagent(sess, NNstructure, len(data), 5)

на

dqn = DQNagent(sess, NNstructure, len(data), 5)
sess.run(tf.global_variables_initializer())


Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...