Я следовал уроку по распознаванию лица и глаз здесь, https://towardsdatascience.com/a-beginners-guide-to-building-your-own-face-recognition-system-to-creep-out-your-friends-df3f4c471d55.
Однако, когда я выполняю python3 detect_blinks.py, возникают некоторые ошибки, и я не знаю, как это исправить. При первой попытке произошла ошибка 1. После нескольких попыток выполнить одну и ту же команду (python3 detect_blinks.py.) Ошибка становится равной 2.
1.
qt.qpa.plugin: Не удалось найти Qt Плагин платформы "Какао" в "" Это приложение не удалось запустить, поскольку ни один плагин платформы Qt не может быть инициализирован. Переустановка приложения может решить эту проблему.
2.
Traceback (последний вызов был последним): файл "detect_blinks.py", строка 70, в best_match_index = np Файл .argmin (face_distances) "<<strong> array_function internals>", строка 5, в файле argmin "/Users/maurice/Dev/newcvtest/lib/python3.8/site-packages/numpy/core /fromnumeric.py ", строка 1267, в argmin return _wrapfun c (a, 'argmin', axis = axis, out = out) Файл" / Users / maurice / Dev / newcvtest / lib / python3 .8 / site-packages / numpy / core / fromnumeri c .py ", строка 61, в _wrapfunc return bound(*args, **kwds)
ValueError: попытка получить аргумент пустой последовательности
это мой python код:
#code forked and tweaked from https://github.com/ageitgey/face_recognition/blob/master/examples/facerec_from_webcam_faster.py
#to extend, just add more people into the known_people folder
import face_recognition
import cv2
import numpy as np
import os
import glob
# Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0)
#make array of sample pictures with encodings
known_face_encodings = []
known_face_names = []
dirname = os.path.dirname(__file__)
path = os.path.join(dirname, 'known_people/')
#make an array of all the saved jpg files' paths
list_of_files = [f for f in glob.glob(path+'*.jpg')]
#find number of known faces
number_files = len(list_of_files)
names = list_of_files.copy()
for i in range(number_files):
globals()['image_{}'.format(i)] = face_recognition.load_image_file(list_of_files[i])
globals()['image_encoding_{}'.format(i)] = face_recognition.face_encodings(globals()['image_{}'.format(i)])[0]
known_face_encodings.append(globals()['image_encoding_{}'.format(i)])
# Create array of known names
names[i] = names[i].replace("known_people/", "")
known_face_names.append(names[i])
# Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()