Как отфильтровать записи искровых данных на основе значения столбца, являющегося картой - PullRequest
0 голосов
/ 09 апреля 2020

У меня есть такой фрейм данных

+-------+------------------------+
|key    |                    data|
+-------+------------------------+
|     61|[a -> b, c -> d, e -> f]|
|     71|[a -> 1, c -> d, e -> f]|
|     81|[c -> d, e -> f]        |
|     91|[x -> b, y -> d, e -> f]|
|     11|[a -> a, c -> b, e -> f]|
|     21|[a -> a, c -> x, e -> f]|
+-------+------------------------+

Я хочу отфильтровать строки, чья карта столбцов данных содержит ключ 'a' и value of key 'a' is 'a'. Таким образом, следующий фрейм данных является желаемым выводом.

+-------+------------------------+
|key    |                    data|
+-------+------------------------+
|     11|[a -> a, c -> b, e -> f]|
|     21|[a -> a, c -> x, e -> f]|
+-------+------------------------+

Я попытался привести значение к карте, но у меня появляется эта ошибка

== SQL ==
Map
^^^

  at org.apache.spark.sql.catalyst.parser.AstBuilder$$anonfun$visitPrimitiveDataType$1.apply(AstBuilder.scala:1673)
  at org.apache.spark.sql.catalyst.parser.AstBuilder$$anonfun$visitPrimitiveDataType$1.apply(AstBuilder.scala:1651)
  at org.apache.spark.sql.catalyst.parser.ParserUtils$.withOrigin(ParserUtils.scala:108)
  at org.apache.spark.sql.catalyst.parser.AstBuilder.visitPrimitiveDataType(AstBuilder.scala:1651)
  at org.apache.spark.sql.catalyst.parser.AstBuilder.visitPrimitiveDataType(AstBuilder.scala:49)
  at org.apache.spark.sql.catalyst.parser.SqlBaseParser$PrimitiveDataTypeContext.accept(SqlBaseParser.java:13779)
  at org.apache.spark.sql.catalyst.parser.AstBuilder.typedVisit(AstBuilder.scala:55)
  at org.apache.spark.sql.catalyst.parser.AstBuilder.org$apache$spark$sql$catalyst$parser$AstBuilder$$visitSparkDataType(AstBuilder.scala:1645)
  at org.apache.spark.sql.catalyst.parser.AstBuilder$$anonfun$visitSingleDataType$1.apply(AstBuilder.scala:90)
  at org.apache.spark.sql.catalyst.parser.AstBuilder$$anonfun$visitSingleDataType$1.apply(AstBuilder.scala:90)
  at org.apache.spark.sql.catalyst.parser.ParserUtils$.withOrigin(ParserUtils.scala:108)
  at org.apache.spark.sql.catalyst.parser.AstBuilder.visitSingleDataType(AstBuilder.scala:89)
  at org.apache.spark.sql.catalyst.parser.AbstractSqlParser$$anonfun$parseDataType$1.apply(ParseDriver.scala:40)
  at org.apache.spark.sql.catalyst.parser.AbstractSqlParser$$anonfun$parseDataType$1.apply(ParseDriver.scala:39)
  at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parse(ParseDriver.scala:98)
  at org.apache.spark.sql.catalyst.parser.AbstractSqlParser.parseDataType(ParseDriver.scala:39)
  at org.apache.spark.sql.Column.cast(Column.scala:1017)
  ... 49 elided

Если я просто хочу фильтровать на основе колонка 'key' Я могу просто go, выполнив df.filter(col("key") === 61). Но проблема в том, что значением является Map.

Есть ли что-то вроде df.filter(col("data").toMap.contains("a") && col("data").toMap.get("a") === "a")

1 Ответ

1 голос
/ 09 апреля 2020

Вы можете фильтровать следующим образом df.filter(col("data.x") === "a"), где x - вложенный столбец внутри данных.

...