Q-значения становятся слишком высокими, значения становятся NaN, Q-Learning Tensorflow - PullRequest
0 голосов
/ 09 апреля 2020

Я запрограммировал очень простую игру, которая работает следующим образом:

Учитывая поле квадратов 4x4, игрок может двигаться (вверх, вправо, вниз или влево).

  • Проходя по клетке, агент, который никогда не посещал, дает награду 1.

  • Заступая на "мертвое поле", награждается -5 и затем игра будет сброшена.

  • Движение на поле, которое уже было посещено, вознаграждается -1

  • За победу -field "(есть ровно один) дает вознаграждение 5, и игра также будет сброшена.


Теперь я хочу, чтобы ИИ научился играть в эту игру через Q- Обучение.

Как я организовал Inputs / Feature Engineering:

Вход для net - это массив с формой 1x4, где arr [0] представляет поле выше (при движении вверх), arr [1] представляет поле справа, arr [2] ниже, arr [3] слева.

Возможные значения, которые может содержать массив: 0, 1, 2, 3

0 = "мертвое поле", поэтому наихудший случай

1 = это будет за пределами поля 4x4 (поэтому вы не можете перейти туда), или поле уже было посещено

2 = непосещаемое поле (так что это что-то хорошее)

3 = "поле выигрыша", поэтому лучший случай

Как видите, я упорядочил их по награде.

Поскольку игра принимает входные данные одинаково (0 = движение вверх, 1 = движение вправо, 2 = движение вниз, 3 = движение влево), единственное, что ИИ должен был бы выучить в основном: выберите индекс массива, который содержит наибольшее значение.

Но, к счастью, он не работает, ожидаемые Q-значения, которые подаются в нейронный net, становятся все выше и выше. Они поднимаются до NaN.


Вот мой код (включая игру в начале):

import numpy as np
import random
Import tensorflow as tf
import matplotlib.pyplot as plt

from time import sleep

episoden = 0

felder = []
schon_besucht = []

playerx = 0
playery = 0

grafik = False

def gib_zustand():
    # besonderes feature engineering:
    # input besteht nur aus einer richtung, die one-hot-encoded ist; also 4 inputneuronen
    # (glut, wand/besucht, unbesucht, sieg)
    #
    # es ist die richtung, die bewertet werden soll (also 1 outputneuron fuer eine richtung)

    # rueckgabe hier: array, shape: 4x4 (s.o.)

    global playerx
    global playery

    # oben 
    if playery == 0:
        oben = 1
    else:
        oben = felder[playery-1][playerx]

    # rechts
    if playerx == 4:
        rechts = 1
    else:
        rechts = felder[playery][playerx+1]

    # unten
    if playery == 4:
        unten = 1
    else:
        unten = felder[playery+1][playerx]

    # links
    if playerx == 0:
        links = 1
    else:
        links = felder[playery][playerx-1]

    return np.array([oben, rechts, unten, links])

def grafisch():
    if grafik:

        # encoding:
        # glut = G, besucht = b, unbesucht = , sieg = S, Spieler = X
        global felder
        global playerx
        global playery

        print('')

        for y in range(0,5):
            print('|', end='')
            for x in range(0,5):
                if felder[y][x] == 0:
                    temp = 'G'
                if felder[y][x] == 1:
                    temp = 'b'
                if felder[y][x] == 2:
                    temp = ' '
                if felder[y][x] == 3:
                    temp = 'S'
                if y == playery and x == playerx:
                    temp = 'X'

                print(temp, end='')
                print('|', end='')
            print('')

def reset():
    print('--- RESET ---')

    global playery
    global playerx
    global felder
    global schon_besucht

    playerx = 1
    playery = 3

    # anordnung
    # glut = 0, wand/besucht = 1, unbesucht = 2, sieg = 3

    felder = [[2 for x in range(0,5)] for y in range(0,5)]
    # zwei mal glut setzen
    gl1 = random.randint(1,3)
    gl1_1 = random.randint(2,3) if gl1==3 else (random.randint(1,2) if gl1==1 else random.randint(1,3))
    felder[gl1][gl1_1] = 0 # glut

    # zweites mal
    gl1 = random.randint(1,3)
    gl1_1 = random.randint(2,3) if gl1==3 else (random.randint(1,2) if gl1==1 else random.randint(1,3))
    felder[gl1][gl1_1] = 0 # glut

    # pudding
    felder[1][3] = 3

    # ruecksetzen
    schon_besucht = []

    grafisch()

    return gib_zustand()

def step(zug):
    # 0 = oben, 1 = rechts, 2 = unten, 3 = links
    global playerx
    global playery
    global felder
    global schon_besucht

    if zug == 0:
        if playery != 0:
            playery -= 1
    if zug == 1:
        if playerx != 4:
            playerx += 1
    if zug == 2:
        if playery != 4:
            playery += 1
    if zug == 3:
        if playerx != 0:
            playerx -= 1

    # belohnung holen
    wert = felder[playery][playerx]

    if wert==0:
        belohnung = -5
    if wert==1:
        belohnung = -1
    if wert==2:
        belohnung = 1
    if wert==3:
        belohnung = 5

    # speichern wenn nicht verloren
    if belohnung != -5:
        schon_besucht.append((playery,playerx))
        felder[playery][playerx] = 1

    grafisch()

    return gib_zustand(), belohnung, belohnung==5, 0 # 0 damits passt

episoden = 0

tf.reset_default_graph()

#These lines establish the feed-forward part of the network used to choose actions
inputs1 = tf.placeholder(shape=[1,4],dtype=tf.float32)
#W1 = tf.Variable(tf.random_uniform([16,8],0,0.01))
W2 = tf.Variable(tf.random_uniform([4,4],0,0.01))
#schicht2 = tf.matmul(inputs1,W1)
Qout = tf.matmul(inputs1,W2)
predict = tf.argmax(Qout,1)

#Below we obtain the loss by taking the sum of squares difference between the target and prediction Q values.
nextQ = tf.placeholder(shape=[1,4],dtype=tf.float32)
loss = tf.reduce_sum(tf.square(nextQ - Qout))
trainer = tf.train.GradientDescentOptimizer(learning_rate=0.1)
updateModel = trainer.minimize(loss)

init = tf.initialize_all_variables()

# Set learning parameters
y = .99
e = 0.1
num_episodes = 10_000
#create lists to contain total rewards and steps per episode
jList = []
rList = []
with tf.Session() as sess:
    sess.run(init)
    for i in range(num_episodes):             
        #Reset environment and get first new observation
        s = reset()
        rAll = 0
        d = False
        j = 0
        #The Q-Network        
        while j < 99:
            j+=1
            #Choose an action by greedily (with e chance of random action) from the Q-network
            a,allQ = sess.run([predict,Qout],feed_dict={inputs1:s.reshape(1,4)}) # berechnet prediction fuer input (input scheint hier one hot encoded zu sein)
            if np.random.rand(1) < e:
                a[0] = random.randint(0,3)                 

            #Get new state and reward from environment
            s1,r,d,_ = step(a[0])
            #Obtain the Q' values by feeding the new state through our network
            Q1 = sess.run(Qout,feed_dict={inputs1:s1.reshape(1,4)})
            #Obtain maxQ' and set our target value for chosen action.
            maxQ1 = np.max(Q1)


            targetQ = allQ
            targetQ[0,a[0]] = r + y*maxQ1
            #Train our network using target and predicted Q values

            _,W1 = sess.run([updateModel,W2],feed_dict={inputs1:s.reshape(1,4),nextQ:targetQ})
            rAll += r
            s = s1

            if r == -5 or r == 5:
                if r == 5:
                    episoden+=1

                reset()

                #Reduce chance of random action as we train the model.
                e = 1./((i/50) + 10)
                break
        jList.append(j)
        #print(rAll)
        rList.append(rAll)
print("Percent of succesful episodes: " + str((episoden/num_episodes)*100) + "%")
plt.plot(rList)
plt.plot(jList)

Как я уже сказал, через некоторое время я получаю вывод, подобный этому:

##
[[1 1 1 1]]
[[nan nan nan nan]]
##
[[1 1 1 1]]
[[nan nan nan nan]]
##
[[1 2 1 1]]
[[nan nan nan nan]]

1 Ответ

0 голосов
/ 11 апреля 2020

Я решил проблему слишком больших чисел, установив y в 0.7. Но ИИ все еще не учится, даже немного за 10 000 эпизодов.

Редактировать: Я нашел решение и разместил его здесь: ссылка

...