Я использовал функцию SVM.SVC
для классификации. Но когда я хотел вычислить взвешенную и невзвешенную среднюю точность, я не мог получить доступ к матрице путаницы. Потому что svm.SVC.score
обеспечивает только процент точности классификатора. Как я могу рассчитать WAR и UAR?
Ниже вы можете найти часть моего скрипта:
scaler = StandardScaler()
scaler.fit(trainX)
trainXsc = scaler.transform(trainX)
testXsc = scaler.transform(testX)
pca = KernelPCA(n_components=j, kernel="sigmoid", random_state=1)
pca.fit(trainXsc) # fit pca kernel with train data
trainXtr = pca.transform(trainXsc) # transform FV with PCA and dimension reduction
testXtr = pca.transform(testXsc)
svmObject = svm.SVC(C=2.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0, shrinking=True,
probability=False, tol=0.001, cache_size=200, class_weight=None,
verbose=False, max_iter=-1, decision_function_shape='ovo', random_state=None)
# SVM Kernel Function
svmObject.fit(trainXtr, trainY) # train SVM kernel with train FV
result = svmObject.score(testXtr, testY)