Я тренирую нейронную сеть, используя 11000 изображений для двух классов. Как только я тренировался на ноутбуке с 4 ГБ ОЗУ и ноутбуком Jupyter в течение 5 эпох, все было в порядке. Я запустил свой код в google colab с использованием 6 ГБ ОЗУ, а теперь он переоснащается в первую эпоху? вот мой код
def CreateModel():
model = Sequential()
# 1st Convolutional Layer
model.add(Conv2D(filters=96, input_shape=(227,227,3), kernel_size=(11,11), strides=(4,4), padding='valid'))
model.add(Activation('relu'))
# Max Pooling
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
# 2nd Convolutional Layer
model.add(Conv2D(filters=256, kernel_size=(11,11), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
# Max Pooling
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
# 3rd Convolutional Layer
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
# 4th Convolutional Layer
model.add(Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
# 5th Convolutional Layer
model.add(Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), padding='valid'))
model.add(Activation('relu'))
# Max Pooling
model.add(MaxPooling2D(pool_size=(2,2), strides=(2,2), padding='valid'))
# Passing it to a Fully Connected layer
model.add(Flatten())
# 1st Fully Connected Layer
model.add(Dense(4096, input_shape=(227*227*3,) , kernel_regularizer=l2(0.05), bias_regularizer=l2(0.05)))
model.add(Activation('relu'))
# Add Dropout to prevent overfitting
model.add(Dropout(0.5))
# 2nd Fully Connected Layer
model.add(Dense(4096 , kernel_regularizer=l2(0.05), bias_regularizer=l2(0.5)))
model.add(Activation('relu'))
# Add Dropout
model.add(Dropout(0.5))
# 3rd Fully Connected Layer
model.add(Dense(1000 , kernel_regularizer=l2(0.05), bias_regularizer=l2(0.05)))
model.add(Activation('relu'))
# Add Dropout
model.add(Dropout(0.5))
# Output Layer
model.add(Dense(2))
model.add(Activation('softmax'))
model.summary()
return model
В чем проблема? Спасибо