Я хочу уменьшить скорость обучения в каждую эпоху. Я использую keras. Я получил эту ошибку, когда я запускаю свой код.
{Traceback (most recent call last):
File "<ipython-input-1-2983b4be581f>", line 1, in <module>
runfile('C:/Users/Gehan Mohamed/cnn_learningratescheduler.py', wdir='C:/Users/Gehan Mohamed')
File "C:\Users\Gehan Mohamed\Anaconda3\lib\site-packages\tensorflow_core\python\framework\constant_op.py", line 96, in convert_to_eager_tensor
return ops.EagerTensor(value, ctx.device_name, dtype)
ValueError: Attempt to convert a value (<keras.callbacks.callbacks.LearningRateScheduler object at 0x000001E7C7B8E780>) with an unsupported type (<class 'keras.callbacks.callbacks.LearningRateScheduler'>) to a Tensor.
Attempt to convert a value (<keras.callbacks.callbacks.LearningRateScheduler object at 0x000001E7C7B8E780>) with an unsupported type (<class 'keras.callbacks.callbacks.LearningRateScheduler'>) to a Tensor}.
Как я могу решить эту ошибку ??
def step_decay(epochs):
if epochs <50:
lrate=0.1
return lrate
if epochs >50:
lrate=0.01
return lrate
lrate = LearningRateScheduler(step_decay)
sgd = SGD(lr=lrate, decay=0, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
callbacks_list = [lrate,callback]
filesPath=getFilesPathWithoutSeizure(i, indexPat)
history=model.fit_generator(generate_arrays_for_training(indexPat, filesPath, end=75),
validation_data=generate_arrays_for_training(indexPat, filesPath, start=75),
steps_per_epoch=int((len(filesPath)-int(len(filesPath)/100*25))),
validation_steps=int((len(filesPath)-int(len(filesPath)/100*75))),
verbose=2,
epochs=300, max_queue_size=2, shuffle=True, callbacks=callbacks_list)