Используя метод PCA и базу данных Yale , я пытаюсь работать с распознаванием лиц в Matlab путем случайного разделения процесса обучения на 20% и процесса тестирования на 80%. Он получает
Индекс в позиции 2 превышает границы массива (не должен превышать 29)
ошибка. Ниже приведен код, в надежде получить помощь:
dataset = load('yale_FaceDataset.mat');
trainSz = round(dataset.samples*0.2);
testSz = round(dataset.samples*0.8);
trainSetCell = cell(1,trainSz*dataset.classes);
testSetCell = cell(1,testSz*dataset.classes);
j = 1;
k = 1;
m = 1;
for i = 1:dataset.classes
% training set
trainSetCell(k:k+trainSz-1) = dataset.images(j:j+trainSz-1);
trainLabels(k:k+trainSz-1) = dataset.labels(j:j+trainSz-1);
k = k+trainSz;
% test set
testSetCell(m:m+testSz-1) = dataset.images(j+trainSz:j+dataset.samples-1);
testLabels(m:m+testSz-1) = dataset.labels(j+trainSz:j+dataset.samples-1);
m = m+testSz;
j = j+dataset.samples;
end
% convert the data from a cell into a matrix format
numImgs = length(trainSetCell);
trainSet = zeros(numImgs,numel(trainSetCell{1}));
for i = 1:numImgs
trainSet(i,:) = reshape(trainSetCell{i},[],1);
end
numImgs = length(testSetCell);
testSet = zeros(numImgs,numel(testSetCell{1}));
for i = 1:numImgs
testSet(i,:) = reshape(testSetCell{i},[],1);
end
%% applying PCA
% compute the mean face
mu = mean(trainSet)';
% centre the training data
trainSet = trainSet - (repmat(mu,1,size(trainSet,1)))';
% generate the eigenfaces(features of the training set)
eigenfaces = pca(trainSet);
% set the number of principal components
Ncomponents = 100;
% Out of the generated components, we keep "Ncomponents"
eigenfaces = eigenfaces(:,1:Ncomponents);
% generate training features
trainFeatures = eigenfaces' * trainSet';
% Subspace projection
% centre features
testSet = testSet - (repmat(mu,1,size(testSet,1)))';
% subspace projection
testFeatures = inv(eigenfaces'*eigenfaces) * eigenfaces' * testSet';
mdl = fitcdiscr(trainFeatures',trainLabels);
labels = predict(mdl,testFeatures');
% find the images that were recognised and their respect. labels
correctRec = find(testLabels == labels');
correctLabels = labels(correctRec);
% find the images that were NOT recognised and their respect. labels
falseRec = find(testLabels ~= labels');
falseLabels = labels(falseRec);
% compute and display the recognition rate
result = length(correctRec)/length(testLabels)*100;
fprintf('The recognition rate is: %0.3f \n',result);
% divide the images into : recognised and unrecognised
correctTest = testSetCell(correctRec);
falseTest = testSetCell(falseRec);
% display some recognised samples and their respective labels
imgshow(correctTest(1:8),correctLabels(1:8));
% display all unrecognised samples and their respective labels
imgshow(falseTest(1:length(falseTest)), falseLabels(1:length(falseTest)));