Я запускаю все oop, чтобы получить финансовую информацию для списка тикеров, который выводит отдельные фреймы финансовых данных на тикер (как показано внизу) - что не является моей целью. Код, который я использую, ниже-
def financefetch(ticker):
yahoo_financials = YahooFinancials(ticker)
balance_sheet_data_qt = yahoo_financials.get_financial_stmts('quarterly', 'balance')
dfItem = pd.DataFrame.from_records(balance_sheet_data_qt)
dataframe_entries = list()
for result in balance_sheet_data_qt.get('balanceSheetHistoryQuarterly').get(ticker):
extracted_date = list(result)[0]
extracted_ticker = ticker
dataframe_row = list(result.values())[0]
dataframe_row['date'] = extracted_date
dataframe_row['ticker'] = extracted_ticker
dataframe_entries.append(dataframe_row)
df = pd.DataFrame(dataframe_entries).set_index('date','ticker')
print(df)
return(df)
tickerdict = {}
tickerlist = ['AAPL','GOOG', 'MU']
for x in tickerlist:
tickerdict[f'df_{x}'] = financefetch(x)
Я пытаюсь создать один фрейм данных, содержащий все мои данные для перечисленных тикеров.
accountsPayable cash commonStock ... totalLiab totalStockholderEquity treasuryStock
date ...
2019-12-28 45111000000 39771000000 45972000000 ... 251087000000 89531000000 -418000000
2019-09-28 46236000000 48844000000 45174000000 ... 248028000000 90488000000 -584000000
2019-06-29 29115000000 50530000000 43371000000 ... 225783000000 96456000000 -639000000
2019-03-30 30443000000 37988000000 42801000000 ... 236138000000 105860000000 -1499000000
[4 rows x 24 columns]
accountsPayable cash commonStock ... totalLiab totalStockholderEquity treasuryStock
date ...
2019-12-31 5561000000 18498000000 50552000000 ... 74467000000 201442000000 -1232000000
2019-09-30 4142000000 16032000000 49040000000 ... 68075000000 194969000000 -1196000000
2019-06-30 3925000000 16587000000 47937000000 ... 64909000000 192192000000 -1091000000
2019-03-31 3710000000 19148000000 46532000000 ... 61877000000 183472000000 -1780000000
[4 rows x 26 columns]
accountsPayable capitalSurplus cash ... totalLiab totalStockholderEquity treasuryStock
date ...
2019-11-28 1879000000 8428000000 6969000000 ... 13051000000 36500000000 -3265000000
2019-08-29 1677000000 8214000000 7152000000 ... 12019000000 35881000000 -3212000000
2019-05-30 1336000000 8217000000 5157000000 ... 10000000000 35323000000 -3213000000
2019-02-28 1523000000 8143000000 6353000000 ... 11960000000 34567000000 -3058000000
[4 rows x 29 columns]
accountsPayable capitalSurplus cash ... totalLiab totalStockholderEquity treasuryStock
date ...
2019-12-31 1363000000 45851000000 19079000000 ... 32322000000 101054000000 -489000000
2019-09-30 860000000 45059000000 15979000000 ... 30419000000 93999000000 -849000000
2019-06-30 655000000 44277000000 13877000000 ... 28244000000 88762000000 -483000000
2019-03-31 604000000 43533000000 11076000000 ... 22961000000 86516000000 -781000000
[4 rows x 23 columns]