Я не могу кодировать данные, используя кодировщик меток в scikit learn.
dataset.csv
имеет два столбца текста и метку. Я пытаюсь прочитать текст из набора данных в список и метки в другой список и добавление этих списков в фрейм данных , но, похоже, он не работает.
from sklearn import model_selection, preprocessing, linear_model, naive_bayes, metrics, svm
from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer
from sklearn import decomposition, ensemble
import pandas, xgboost, numpy, string
data = open('dataset.csv').read()
labels = []
texts = []
for i ,line in enumerate(data.split("\n")):
content = line.split("\",")
texts.append(content[0])
labels.append(content[1:])
trainDF = pandas.DataFrame()
trainDF['text'] = texts
trainDF['label'] = labels
train_x, valid_x, train_y, valid_y = model_selection.train_test_split(trainDF['text'],trainDF['label'],test_size = 0.2,random_state = 0)
encoder = preprocessing.LabelEncoder()
train_y = encoder.fit_transform(train_y)
valid_y = encoder.fit_transform(valid_y)
count_vect = CountVectorizer(analyzer='word', token_pattern=r'\w{1,}')
count_vect.fit(trainDF['texts'])
xtrain_count = count_vect.transform(train_x)
xvalid_count = count_vect.transform(valid_x)
tfidf_vect = TfidfVectorizer(analyzer='word', token_pattern=r'\w{1,}', max_features=5000)
tfidf_vect.fit(trainDF['texts'])
xtrain_tfidf = tfidf_vect.transform(train_x)
xvalid_tfidf = tfidf_vect.transform(valid_x)
accuracy = train_model(svm.SVC(), xtrain_tfidf, train_y, xvalid_tfidf)
print(accuracy)
Ошибка:
Traceback (most recent call last):
File "/home/crackthumb/environments/my_env/lib/python3.6/site-packages/sklearn/preprocessing/label.py", line 105, in _encode
res = _encode_python(values, uniques, encode)
File "/home/crackthumb/environments/my_env/lib/python3.6/site-packages/sklearn/preprocessing/label.py", line 59, in _encode_python
uniques = sorted(set(values))
TypeError: unhashable type: 'list'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "Classifier.py", line 21, in <module>
train_y = encoder.fit_transform(train_y)
File "/home/crackthumb/environments/my_env/lib/python3.6/site-packages/sklearn/preprocessing/label.py", line 236, in fit_transform
self.classes_, y = _encode(y, encode=True)
File "/home/crackthumb/environments/my_env/lib/python3.6/site-packages/sklearn/preprocessing/label.py", line 107, in _encode
raise TypeError("argument must be a string or number")
TypeError: argument must be a string or number