Для классификации изображений в M xnet с использованием модели GluonCV я использую преобразованное изображение по сети, чтобы получить прогнозируемые вероятности для всех классов Imag eNet.
def predict_probabilities(network, data):
"""
Should return the predicted probabilities of ImageNet classes for the given image.
:param network: pre-trained image classification model
:type network: mx.gluon.Block
:param data: batch of transformed images of shape (1, 3, 224, 224)
:type data: mx.nd.NDArray
:return: array of probabilities of shape (1000,)
:rtype: mx.nd.NDArray
"""
# YOUR CODE HERE
data=transform_image("")
pred_probas= network(data)
pred_probas=pred_probas[0]
return pred_probas
Я должен удовлетворить эти утверждения:
assert pred_probas.shape == (1000,)
np.testing.assert_almost_equal(pred_probas.sum().asscalar(), 1, decimal=5)
assert pred_probas.dtype == np.float32
Хотя я получаю эту ошибку:
AssertionError Traceback (most recent call last)
<ipython-input-10-70779066d528> in <module>
1 pred_probas =
predict_probabilities(network, transformed_test_output)
2 assert
pred_probas.shape == (1000,)
----> 3
np.testing.assert_almost_equal(pred_probas.sum().asscalar(), 1, decimal=5)
4 assert pred_probas.dtype == np.float32
/usr/local/lib/python3.7/dist-
packages/numpy/testing/_private/utils.py in assert_almost_equal(actual, desired,
decimal, err_msg, verbose)
599 pass
600 if abs(desired -
actual) >= 1.5 * 10.0**(-decimal):
--> 601 raise
AssertionError(_build_err_msg())
602
603
AssertionError:
Arrays are
not almost equal to 5 decimals
ACTUAL: 314.64026
DESIRED: 1
Как мне преодолеть это?