- TP: количество положительных прогнозов, которые на самом деле равны 1
- FP: количество положительных предусловий, которые на самом деле равны 0
- TN: количество отрицательных прогнозов, которые на самом деле равны 0
- FN: число отрицательных предусловий, которые на самом деле равны 1
Когда трехзначное число = 0, модель прогнозирует только положительное значение, поэтому FN = TN = 0. FPR = FP / (FP + TN) = 1, TPR = TP / (TP + FN) = 1, поэтому эта точка должна быть (1,1). Вы делаете ошибку, что
Когда трехзначное число = 1, модель прогнозирует только отрицательное значение, поэтому TP = FP = 0. FPR = FP / (FP + TN) = 0, TPR = TP / (TP + FN) = 0, поэтому эта точка должна быть (0,0).
# roc curve and auc
from sklearn.datasets import make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
from matplotlib import pyplot
import pandas as pd
# generate 2 class dataset
X, y = make_classification(n_samples=1000, n_classes=2, weights=[1,1], random_state=1)
# split into train/test sets
trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2)
# fit a model
model = KNeighborsClassifier(n_neighbors=3)
model.fit(trainX, trainy)
# predict probabilities
probs = model.predict_proba(testX)
# keep probabilities for the positive outcome only
probs = probs[:, 1]
# calculate AUC
auc = roc_auc_score(testy, probs)
print('AUC: %.3f' % auc)
# calculate roc curve
fpr, tpr, thresholds = roc_curve(testy, probs)
# plot no skill
pyplot.plot([0, 1], [0, 1], linestyle='--')
# plot the roc curve for the model
pyplot.plot(fpr, tpr, marker='.')
# show the plot
pyplot.show()
# see calculations
pd.DataFrame({'fpr':fpr,'tpr':tpr,'thresholds':thresholds})
Выходы:
fpr tpr threshouds
0 0.000000 0.000000 2.000000
1 0.054264 0.561983 1.000000
2 0.217054 0.884298 0.666667
3 0.406977 0.975207 0.333333
4 1.000000 1.000000 0.000000