Мой эксперимент - классификация Жабы и Змеи с CNN. Размер данных изображения составляет 4000 для каждого вида, собранного из Inte rnet. Я получаю точность тестирования от 78 до 80%. () Исходный код был изменен, чтобы добавить тестовые данные для матрицы путаницы). Теперь я хочу добавить предварительную обработку общих данных в код, но не знаю, как это сделать в моем существующем коде. Как эффективно добавить обработку данных -
#Image Generator
train_datagen = ImageDataGenerator(rescale=1. / 255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1. / 255)
X_train = train_datagen.flow_from_directory(DATADIR,
target_size=(IMG_SIZE, IMG_SIZE),
batch_size=32,
class_mode='categorical')
X_test = test_datagen.flow_from_directory(test,
target_size=(IMG_SIZE, IMG_SIZE),
batch_size=32,
class_mode='categorical')
*****existing CNN code is-*****
DATADIR= "C:\\Users\sazi\Desktop\snake&toad"
test="C:\\Users\sazi\Desktop\test"
CATEGORIES = ["snake", "toad"]
test_categories=["snake_test", "toad_test"]
IMG_SIZE = 60
training_data = []
#for training
def create_training_data():
for category in CATEGORIES: # do toads and snakes
path = os.path.join(DATADIR,category) # create path to toads and snakes
class_num = CATEGORIES.index(category) # get the classification (0 or a 1). 0=snake 1=toad
print (class_num)
for img in tqdm(os.listdir(path)): # iterate over each image per toads and snakes
try:
img_array = cv2.imread(os.path.join(path,img) ,cv2.IMREAD_GRAYSCALE)
new_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
training_data.append([new_array, class_num]) # add this to our training_data
except Exception as e: # in the interest in keeping the output clean...
pass
create_training_data()
#print(len(training_data))
#print(len(test))
#for testing.. dont know do I need to do this part of not
test_data = []
def create_test_data():
for category in test_categories: # do toads and snakes
path = os.path.join(test,category) # create path to toads and snakes
class_num = test_categories.index(category) #classification (0 or a 1). 0=snake 1=toad
for img in tqdm(os.listdir(path)): # iterate over each image per toads and snakes
try:
img_array = cv2.imread(os.path.join(path,img) ,cv2.IMREAD_GRAYSCALE)
test_array = cv2.resize(img_array, (IMG_SIZE, IMG_SIZE))
test_data.append([test_array, class_num]) # add this to our training_data
except Exception as e: # in the interest in keeping the output clean...
pass
create_test_data()
#print(len(test_data))
import random
random.shuffle(training_data)
for sample in training_data[:5]:
print(sample[1])
X_train = []
y_train = []
for features,label in training_data:
X_train.append(features)
y_train.append(label)
print(X_train[0].reshape(-1, IMG_SIZE, IMG_SIZE, 1))
X_train = np.array(X_train).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y_train = np.array(y_train)
X_train = X_train/255.0
X_test = []
y_test = []
for features,label in test_data:
X_test.append(features)
y_test.append(label)
print(X_test[0].reshape(-1, IMG_SIZE, IMG_SIZE, 1))
X_test = np.array(X_test).reshape(-1, IMG_SIZE, IMG_SIZE, 1)
y_test = np.array(y_test)
X_test = X_test/255.0
model = Sequential()
model.add(Conv2D((32), (3, 3), input_shape=(IMG_SIZE, IMG_SIZE, 1)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Conv2D((32), (3, 3)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Conv2D((64), (3, 3)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Conv2D((64), (3, 3)))
model.add(Activation('relu'))
model.add(BatchNormalization())
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.5))
model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors
model.add(Dropout(0.5))
model.add(Dense(512))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['acc'])
history=model.fit(X_train, y_train, batch_size=32, epochs=50, validation_split=0.3)