Я относительно новичок в Keras и Tensorflow и хочу изучить базовые реализации c. Для этого я хочу построить модель, которая может изучать / обнаруживать / предсказывать рукописные цифры, поэтому я использую набор данных MNIST от Keras. Я уже создал эту модель с помощью Keras Functional API, и все работает отлично. Теперь я хотел сделать то же самое, но на этот раз я хочу построить модель подкласса Keras. Проблема в том, что я получил ошибку, когда выполнил код с подклассовой моделью Keras. Это код модели с функциональным API (который прекрасно работает без каких-либо проблем):
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from keras.datasets import mnist
import numpy as np
#Load MNIST-Dataset
(x_train_full, y_train_full), (x_test, y_test) = mnist.load_data()
#Create train- and validationdata
X_valid = x_train_full[:5000]/255.0
X_train = x_train_full[5000:] / 255.0
y_valid, y_train = y_train_full[:5000], y_train_full[5000:]
#Create the model with the keras functional-API
inputs = keras.layers.Input(shape=(28, 28))
flatten = keras.layers.Flatten(input_shape=(28, 28))(inputs)
hidden1 = keras.layers.Dense(256, activation="relu")(flatten)
hidden2 = keras.layers.Dense(128, activation='relu')(hidden1)
outputs = keras.layers.Dense(10, activation='softmax')(hidden2)
model = keras.Model(inputs=[inputs], outputs=[outputs])
model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])
h = model.fit(X_train, y_train, epochs=5, validation_data=(X_valid, y_valid))
#Evaluate the model with testdata
test_loss, test_acc = model.evaluate(x_test, y_test, verbose=2)
print('\nTest accuracy: ', test_acc)
print('\nTest loss: ', test_loss)
#Create Predictions:
myPrediction = model.predict(x_test)
#Prediction example of one testpicture
print(myPrediction[0])
print('Predicted Item: ', np.argmax(myPrediction[0]))
print('Actual Item: ', y_test[0])
А вот (не работает) код модели с подклассами Keras, которая должна делать точно то же самое как код выше:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from keras.datasets import mnist
import numpy as np
#Load MNIST-Dataset
(x_train_full, y_train_full), (x_test, y_test) = mnist.load_data()
#Create train- and validationdata
X_valid = x_train_full[:5000]/255.0
X_train = x_train_full[5000:] / 255.0
y_valid, y_train = y_train_full[:5000], y_train_full[5000:]
#Create a keras-subclassing-model:
class MyModel(tf.keras.Model):
def __init__(self):
super(MyModel, self).__init__()
#Define layers
self.input_ = keras.layers.Input(shape=(28, 28))
self.flatten = keras.layers.Flatten(input_shape=(28, 28))
self.dense_1 = keras.layers.Dense(256, activation="relu")
self.dense_2 = keras.layers.Dense(128, activation="relu")
self.output_ = keras.layers.Dense(10, activation="softmax")
def call(self, inputs):
x = self.input_(inputs)
x = self.flatten(x)
x = self.dense_1(x)
x = self.dense_2(x)
x = self.output_(x)
return x
model = MyModel()
model.compile(loss="sparse_categorical_crossentropy", optimizer="sgd", metrics=["accuracy"])
h = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid))
Каждый раз, когда я запускаю этот код, я получаю одну и ту же ошибку. Ошибка появилась при вызове fit(...)
-метода:
Traceback (most recent call last):
File "c:/Users/MichaelM/Documents/PythonSkripte/MachineLearning/SubclassedModel.py", line 39, in <module>
h = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid))
File "C:\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 819, in fit
use_multiprocessing=use_multiprocessing)
File "C:\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 235, in fit
use_multiprocessing=use_multiprocessing)
File "C:\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 593, in _process_training_inputs
use_multiprocessing=use_multiprocessing)
File "C:\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training_v2.py", line 646, in _process_inputs
x, y, sample_weight=sample_weights)
File "C:\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 2346, in _standardize_user_data
all_inputs, y_input, dict_inputs = self._build_model_with_inputs(x, y)
File "C:\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 2572, in _build_model_with_inputs
self._set_inputs(cast_inputs)
File "C:\Python37\lib\site-packages\tensorflow_core\python\keras\engine\training.py", line 2659, in _set_inputs
outputs = self(inputs, **kwargs)
File "C:\Python37\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 773, in __call__
outputs = call_fn(cast_inputs, *args, **kwargs)
File "C:\Python37\lib\site-packages\tensorflow_core\python\autograph\impl\api.py", line 237, in wrapper
raise e.ag_error_metadata.to_exception(e)
TypeError: in converted code:
c:/Users/MichaelM/Documents/PythonSkripte/MachineLearning/SubclassedModel.py:28 call *
x = self.input_(inputs)
C:\Python37\lib\site-packages\tensorflow_core\python\autograph\impl\api.py:447 converted_call
f in m.__dict__.values() for m in (collections, pdb, copy, inspect, re)):
C:\Python37\lib\site-packages\tensorflow_core\python\autograph\impl\api.py:447 <genexpr>
f in m.__dict__.values() for m in (collections, pdb, copy, inspect, re)):
C:\Python37\lib\site-packages\tensorflow_core\python\ops\math_ops.py:1351 tensor_equals
return gen_math_ops.equal(self, other, incompatible_shape_error=False)
C:\Python37\lib\site-packages\tensorflow_core\python\ops\gen_math_ops.py:3240 equal
name=name)
C:\Python37\lib\site-packages\tensorflow_core\python\framework\op_def_library.py:477 _apply_op_helper
repr(values), type(values).__name__, err))
TypeError: Expected float32 passed to parameter 'y' of op 'Equal', got 'collections' of type 'str' instead. Error: Expected float32, got 'collections' of type 'str' instead.
Не могли бы вы помочь мне решить эту проблему и, возможно, объяснить, почему это не работает, потому что я не знаю, что это за ошибка на самом деле значит. И можно ли тогда вызывать методы evaluate(...)
и predict(...)
, как в функциональном коде API? Я использую следующие конфигурации:
- Код Visual Studio с Python -Extension в качестве IDE
- Python -Версия: 3.7.6
- TensorFlow-Version : 2.1.0
- Keras-версия: 2.2.4-tf