In [200]: zzz = np.array([[0.1, 0.2, 0.3, 0.4, 0.5],
...: [0.6, 0.7, 0.8, 0.9, 1. ]])
...:
In [201]: zl = zzz.tolist()
In [202]: zl
Out[202]: [[0.1, 0.2, 0.3, 0.4, 0.5], [0.6, 0.7, 0.8, 0.9, 1.0]]
random.random
, вероятно, использует назначение на месте, например:
In [203]: zzz[0],zzz[1]=zzz[1],zzz[0]
In [204]: zzz
Out[204]:
array([[0.6, 0.7, 0.8, 0.9, 1. ],
[0.6, 0.7, 0.8, 0.9, 1. ]])
Обратите внимание на репликацию.
Но применяется к списку списков:
In [205]: zl[0],zl[1]=zl[1],zl[0]
In [206]: zl
Out[206]: [[0.6, 0.7, 0.8, 0.9, 1.0], [0.1, 0.2, 0.3, 0.4, 0.5]]
In [207]: zl[0],zl[1]=zl[1],zl[0]
In [208]: zl
Out[208]: [[0.1, 0.2, 0.3, 0.4, 0.5], [0.6, 0.7, 0.8, 0.9, 1.0]]
Я протестировал zl = list(zzz)
и все еще получил поведение массива. Это zl
список с представлениями zzz
. tolist
составляет список списков, которые s totally independent of
zzz`.
Короче говоря random.random
не может правильно обрабатывать изменения на месте ndarray
. np.random.shuffle
предназначен для работы с 1-м dim массива, поэтому он правильно понимает.
правильное назначение для ndarray
:
In [211]: zzz = np.array([[0.1, 0.2, 0.3, 0.4, 0.5],
...: [0.6, 0.7, 0.8, 0.9, 1. ]])
...:
In [212]: zzz[[0,1]] = zzz[[1,0]]
In [213]: zzz
Out[213]:
array([[0.6, 0.7, 0.8, 0.9, 1. ],
[0.1, 0.2, 0.3, 0.4, 0.5]])
In [214]: zzz[[0,1]] = zzz[[1,0]]
In [215]: zzz
Out[215]:
array([[0.1, 0.2, 0.3, 0.4, 0.5],
[0.6, 0.7, 0.8, 0.9, 1. ]])