Я получаю следующую ошибку:
ValueError: Ошибка при проверке ввода: ожидалось, что flatten_input имеет 4 измерения, но получил массив с формой (80, 80, 3)
Traceback (most recent call last):
File "/home/ubuntu/capstone/TFcaps.py", line 163, in <module>
validation_steps=total_val // batch_size
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py", line 819, in fit
use_multiprocessing=use_multiprocessing)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_v2.py", line 235, in fit
use_multiprocessing=use_multiprocessing)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_v2.py", line 593, in _process_training_inputs
use_multiprocessing=use_multiprocessing)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_v2.py", line 706, in _process_inputs
use_multiprocessing=use_multiprocessing)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/data_adapter.py", line 702, in __init__
x = standardize_function(x)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_v2.py", line 684, in standardize_function
return dataset.map(map_fn, num_parallel_calls=dataset_ops.AUTOTUNE)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 1591, in map
self, map_func, num_parallel_calls, preserve_cardinality=True)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 3926, in __init__
use_legacy_function=use_legacy_function)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 3147, in __init__
self._function = wrapper_fn._get_concrete_function_internal()
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 2395, in _get_concrete_function_internal
*args, **kwargs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 2389, in _get_concrete_function_internal_garbage_collected
graph_function, _, _ = self._maybe_define_function(args, kwargs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 2703, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/eager/function.py", line 2593, in _create_graph_function
capture_by_value=self._capture_by_value),
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/framework/func_graph.py", line 978, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 3140, in wrapper_fn
ret = _wrapper_helper(*args)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/data/ops/dataset_ops.py", line 3082, in _wrapper_helper
ret = autograph.tf_convert(func, ag_ctx)(*nested_args)
File "/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/autograph/impl/api.py", line 237, in wrapper
raise e.ag_error_metadata.to_exception(e)
ValueError: in converted code:
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_v2.py:677 map_fn
batch_size=None)
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training.py:2410 _standardize_tensors
exception_prefix='input')
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_utils.py:573 standardize_input_data
'with shape ' + str(data_shape))
ValueError: Error when checking input: expected flatten_input to have 4 dimensions, but got array with shape (80, 80, 3)
Моя модель выглядит следующим образом:
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(80, 80, 3)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(4)])
А вот мои изображения:
Image shape: (80, 80, 3)
Label: [False False True False]
<TakeDataset shapes: ((80, 80, 3), (4,)), types: (tf.float32, tf.bool)>
Вот как я собираю модель:
model.compile(optimizer=tf.keras.optimizers.Adam(lr=LR), loss=tf.keras.losses.CategoricalCrossentropy(), metrics=["accuracy"])
И вот как я приспосабливаюсь:
history = model.fit(
train_data,
steps_per_epoch=total_train // batch_size,
epochs=epochs,
validation_data=val_data,
validation_steps=total_val // batch_size
)
Как я могу решить эту проблему?