Как инициализировать модель второй перчатки с решением из первой? - PullRequest
2 голосов
/ 10 апреля 2020

Я пытаюсь реализовать одно из решений вопроса о Как выровнять две модели GloVe в text2ve c? . Я не понимаю, каковы правильные значения для ввода в GlobalVectors$new(..., init = list(w_i, w_j). Как убедиться, что значения w_i и w_j верны?

Вот минимальный воспроизводимый пример. Во-первых, подготовьте несколько корпусов для сравнения, взятых из учебника quanteda. Я использую dfm_match(all_words), чтобы убедиться, что все слова присутствуют в каждом наборе, но, похоже, это не дает желаемого эффекта.

library(quanteda)

# from https://quanteda.io/articles/pkgdown/replication/text2vec.html

# get a list of all words in all documents
all_words <-
  data_corpus_inaugural %>% 
  tokens(remove_punct = TRUE,
         remove_symbols = TRUE,
         remove_numbers = TRUE) %>% 
  types()

# should expect this mean features in each set
length(all_words)

# these are our three sets that we want to compare, we want to project the
# change in a few key words on a fixed background of other words
corpus_1 <- data_corpus_inaugural[1:19]
corpus_2 <- data_corpus_inaugural[20:39]
corpus_3 <- data_corpus_inaugural[40:58]

my_tokens1 <- texts(corpus_1) %>%
  char_tolower() %>%
  tokens(remove_punct = TRUE,
         remove_symbols = TRUE,
         remove_numbers = TRUE) 

my_tokens2 <- texts(corpus_2) %>%
  char_tolower() %>%
  tokens(remove_punct = TRUE,
         remove_symbols = TRUE,
         remove_numbers = TRUE) 

my_tokens3 <- texts(corpus_3) %>%
  char_tolower() %>%
  tokens(remove_punct = TRUE,
         remove_symbols = TRUE,
         remove_numbers = TRUE) 

my_feats1 <- 
  dfm(my_tokens1, verbose = TRUE) %>%
  dfm_trim(min_termfreq = 5) %>% 
  dfm_match(all_words) %>% 
  featnames()

my_feats2 <- 
  dfm(my_tokens2, verbose = TRUE) %>%
  dfm_trim(min_termfreq = 5) %>%
  dfm_match(all_words) %>% 
  featnames()

my_feats3 <- 
  dfm(my_tokens3, verbose = TRUE) %>%
  dfm_trim(min_termfreq = 5) %>%
  dfm_match(all_words) %>% 
  featnames()

# leave the pads so that non-adjacent words will not become adjacent
my_toks1_2 <- tokens_select(my_tokens1, my_feats1, padding = TRUE)
my_toks2_2 <- tokens_select(my_tokens2, my_feats2, padding = TRUE)
my_toks3_2 <- tokens_select(my_tokens3, my_feats3, padding = TRUE)

# Construct the feature co-occurrence matrix
my_fcm1 <- fcm(my_toks1_2, context = "window", tri = TRUE)
my_fcm2 <- fcm(my_toks2_2, context = "window", tri = TRUE)
my_fcm3 <- fcm(my_toks3_2, context = "window", tri = TRUE)

Где-то на вышеуказанных этапах я считаю, что мне нужно убедиться, что fcm для каждого набора содержит все слова всех наборов, чтобы получить одинаковые размеры матрицы, но я не уверен, как чтобы совершить это.

Теперь подгоняем модель вложения слов для первого набора:


library("text2vec")

glove1 <- GlobalVectors$new(rank = 50, 
                            x_max = 10)

my_main1 <- glove1$fit_transform(my_fcm1, 
                               n_iter = 10,
                               convergence_tol = 0.01, 
                               n_threads = 8)

my_context1 <- glove1$components
word_vectors1 <- my_main1 + t(my_context1)

И вот где я застрял, я хочу инициализировать вторую модель с первой, чтобы система координат будет сопоставим между первой и второй моделями. Я прочитал , что w_i и w_j являются основными и контекстными словами, а b_i и b_j являются предвзятыми. Я нашел вывод для этих объектов в моем первом объекте модели, но получаю ошибку:

glove2 <- GlobalVectors$new(rank = 50, 
                            x_max = 10,
                            init = list(w_i = glove1$.__enclos_env__$private$w_i, 
                                        b_i = glove1$.__enclos_env__$private$b_i, 
                                        w_j = glove1$.__enclos_env__$private$w_j, 
                                        b_j = glove1$.__enclos_env__$private$b_j))

my_main2 <- glove2$fit_transform(my_fcm2, 
                                 n_iter = 10,
                                 convergence_tol = 0.01, 
                                 n_threads = 8)

Ошибка: Error in glove2$fit_transform(my_fcm2, n_iter = 10, convergence_tol = 0.01, : init values provided in the constructor don't match expected dimensions from the input matrix

Предполагается, что я идентифицировал w_i, et c., Правильно в первой модели, как я могу убедиться, что они имеют правильный размер?

Вот моя информация о сеансе:

sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS  10.15.2

Matrix products: default
BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.6/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] text2vec_0.6   quanteda_2.0.0

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.4            pillar_1.4.3          compiler_3.6.0        tools_3.6.0           stopwords_1.0        
 [6] digest_0.6.25         packrat_0.5.0         lifecycle_0.2.0       tibble_3.0.0          gtable_0.3.0         
[11] lattice_0.20-40       pkgconfig_2.0.3       rlang_0.4.5           Matrix_1.2-18         fastmatch_1.1-0      
[16] cli_2.0.2             rstudioapi_0.11       mlapi_0.1.0           parallel_3.6.0        RhpcBLASctl_0.20-17  
[21] dplyr_0.8.5           vctrs_0.2.4           grid_3.6.0            tidyselect_1.0.0.9000 glue_1.3.2           
[26] data.table_1.12.8     R6_2.4.1              fansi_0.4.1           lgr_0.3.4             ggplot2_3.3.0        
[31] purrr_0.3.3           magrittr_1.5          scales_1.1.0          ellipsis_0.3.0        assertthat_0.2.1     
[36] float_0.2-3           rsparse_0.4.0         colorspace_1.4-1      stringi_1.4.6         RcppParallel_5.0.0   
[41] munsell_0.5.0         crayon_1.3.4.9000 

1 Ответ

1 голос
/ 14 апреля 2020

Вот рабочий пример. Подробнее см. Документацию ?rsparse::GloVe.

library(rsparse)
data("movielens100k")
x = crossprod(sign(movielens100k))

model = GloVe$new(rank = 10, x_max = 5)

w_i = model$fit_transform(x = x, n_iter = 5, n_threads = 1)
w_j = model$components
init = list(w_i = t(w_i), model$bias_i, w_j = w_j, b_j = model$bias_j)

model2 = GloVe$new(rank = 10, x_max = 10, init = init)
w_i2 = model2$fit_transform(x)
...