Я переписываю Reinforcement Learning Framework от последовательного выполнения кода к параллельному (многопроцессорному), чтобы сократить время обучения. Это работает, но после нескольких часов обучения выдается MemoryError
. Я попытался добавить gc.collect
после каждого l oop без изменений.
Вот для l oop, который использует многопроцессорность:
for episode in episodes:
env.episode = episode
flex_list = [0,1,2]
for machine in env.list_of_machines:
flex_plan = []
for time_step in range(0,env.steplength):
flex_plan.append(random.choice(flex_list))
machine.flex_plan = flex_plan
env.current_step = 0
steps = []
state = env.reset(restricted=True)
steps.append(state)
# multiprocessing part, has condition to use a specific amount of CPUs or 'all' of them
####################################################
func_part = partial(parallel_pool, episode=episode, episodes=episodes, env=env, agent=agent, state=state, log_data_qvalues=log_data_qvalues, log_data=log_data, steps=steps)
if CPUs_used == 'all':
mp.Pool().map(func_part, range(env.steplength-1))
else:
mp.Pool(CPUs_used).map(func_part, range(env.steplength-1))
############################################################
# model is saved periodically, not only in the end
save_interval = 100 #set episode interval to save models
if (episode + 1) % save_interval == 0:
agent.save_model(f'models/model_{filename}_{episode + 1}')
print(f'model saved at episode {episode + 1}')
plt.close()
gc.collect()
Вывод после 26 эпизодов обучения:
Episode: 26/100 Action: 1/11 Phase: 3/3 Measurement Count: 231/234 THD fake slack: 0.09487 Psoll: [0.02894068 0.00046048 0. 0. ] Laptime: 0.181
Episode: 26/100 Action: 1/11 Phase: 3/3 Measurement Count: 232/234 THD fake slack: 0.09488 Psoll: [0.02894068 0.00046048 0. 0. ] Laptime: 0.181
Episode: 26/100 Action: 1/11 Phase: 3/3 Measurement Count: 233/234 THD fake slack: 0.09489 Psoll: [0.02894068 0.00046048 0. 0. ] Laptime: 0.179
Traceback (most recent call last):
File "C:/Users/Artur/Desktop/RL_framework/train.py", line 87, in <module>
main()
File "C:/Users/Artur/Desktop/RL_framework/train.py", line 77, in main
duration = cf.training(episodes, env, agent, filename, topology=topology, multi_processing=multi_processing, CPUs_used=CPUs_used)
File "C:\Users\Artur\Desktop\RL_framework\help_functions\custom_functions.py", line 166, in training
save_interval = parallel_training(range(episodes), env, agent, log_data_qvalues, log_data, filename, CPUs_used)
File "C:\Users\Artur\Desktop\RL_framework\help_functions\custom_functions.py", line 81, in parallel_training
mp.Pool().map(func_part, range(env.steplength-1))
File "C:\Users\Artur\Anaconda\lib\multiprocessing\pool.py", line 268, in map
return self._map_async(func, iterable, mapstar, chunksize).get()
File "C:\Users\Artur\Anaconda\lib\multiprocessing\pool.py", line 657, in get
raise self._value
File "C:\Users\Artur\Anaconda\lib\multiprocessing\pool.py", line 431, in _handle_tasks
put(task)
File "C:\Users\Artur\Anaconda\lib\multiprocessing\connection.py", line 206, in send
self._send_bytes(_ForkingPickler.dumps(obj))
File "C:\Users\Artur\Anaconda\lib\multiprocessing\reduction.py", line 51, in dumps
cls(buf, protocol).dump(obj)
MemoryError
Есть ли способ это исправить?