Вопрос по коду для ECIR 2018
бумаги "Cross-lingual Document Retrieval using Regularized Wasserstein Distance"
. Когда я запускаю код: "python emd.py concept_net_1706.300.en concept_net_1706.300.fr wiki_data/wikicomp.enfr.2k.en wiki_data/wikicomp.enfr.2k.fr 500 french"
Появляются следующие вопросы:
/home/xzy/xzy_py/lib/python3.6/site-packages/sklearn/neighbors/_base.py:167: EfficiencyWarning: Precomputed sparse input was not sorted by data.
EfficiencyWarning)
Traceback (most recent call last):
File "emd.py", line 56, in
clf.fit(X_train_idf[:instances], np.ones(instances))
File "/home/xzy/docretrieve/wass_funcs.py", line 120, in fit
return super(WassersteinDistances, self).fit(X, y)
File "/home/xzy/xzy_py/lib/python3.6/site-packages/sklearn/neighbors/_base.py", line 1155, in fit
return self._fit(X)
File "/home/xzy/xzy_py/lib/python3.6/site-packages/sklearn/neighbors/_base.py", line 409, in _fit
.format(X.shape[0], X.shape[1]))
ValueError: Precomputed matrix must be a square matrix. Input is a 500x29243 matrix.