Вот еще один подход, использующий apa_table()
.
Сначала более простой способ суммировать ваши данные:
library("dplyr")
library("tidyr")
df <- structure(list(investment_type = structure(c(3L, 3L, 3L, 3L,
3L, 3L, 3L, 1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 3L, 3L, 3L,
3L), .Label = c("angel", "pre_seed", "seed"), class = "factor"),
gender_d = c(1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1,
1, 1, 1, 1, 0, 1), state_code_org = structure(c(3L, 22L,
3L, 15L, 3L, 4L, 3L, 3L, 22L, 3L, 29L, 25L, 8L, 29L, 10L,
6L, 22L, 4L, 17L, 23L, 17L), .Label = c("AL", "AR", "CA",
"CO", "CT", "DC", "DE", "FL", "GA", "IL", "KS", "LA", "MA",
"MD", "MN", "MO", "NC", "NE", "NH", "NJ", "NV", "NY", "OH",
"OR", "PA", "RI", "SC", "TN", "TX", "UT", "VA", "VT", "WA",
"WI", "WY"), class = "factor"), first_time_founder_d = c(0,
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, NA, 1, 0, 0, 1,
0)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,
-21L))
factor_level_count <- df %>%
mutate(
gender_d = factor(gender_d, levels = c(0, 1), labels = c("Female", "Male"))
, first_time_founder_d = factor(first_time_founder_d, levels = c(0, 1), labels = c("No", "Yes"))
, investment_type = factor(investment_type, levels = c("angel", "pre_seed", "seed"), labels = c("Angel", "Pre-Seed", "Seed"))
) %>%
na.exclude %>%
pivot_longer(cols = everything()) %>%
group_by(name, value) %>%
count() %>%
ungroup() %>%
mutate(
name = factor(name , levels = c("first_time_founder_d", "gender_d", "investment_type", "state_code_org"), labels = c("Firt-Time Founder", "Gender", "Investement Type", "State"))
) %>%
group_by(name) %>%
mutate(percent = printnum(n / sum(n) * 100, digits = 1)) %>%
rename(Variable = value, N = n, "%" = percent)
Теперь вы можете разбить data.frame
и объединить их в именованный список чтобы получить отступы.
factor_level_count_list <- split(factor_level_count, f = factor_level_count$name, drop = TRUE) %>%
lapply(function(x) x[, -1]) # Removes split-column
library("papaja")
apa_table(
factor_level_count_list
, align = "llr" # Right-align last column
, caption = "Summary of categorical variables."
, note = "Missing data is not shown."
, merge_method = "indent" # Table style to use for merging list elements
, midrules = c(3, 6, 9)
)