OpenCL, Понимание программы VectorAdd - PullRequest
0 голосов
/ 01 февраля 2020

Я новичок в OpenCL, с очень ограниченным опытом в C / C ++. Мне дали эту программу OpenCL, которая добавляет два вектора и должна выяснить, как она работает. Это исходит от Intel:

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-examples/design-software/opencl/vector-addition.html

Было бы правильно сказать: каждое ядро ​​использует 1 элемент из A и 1 элемент из B для вычисления 1 элемента Z?

Мне кажется, что он определяет количество устройств (num_devices) и по существу делит размер задачи (N) на num_devices, чтобы определить количество элементов на устройство (n_per_device []). Затем он создает массивы случайных чисел для каждого устройства (input_a [] и input_b []) с количеством элементов n_per_device.

Затем эти массивы используются ядром, где выполняется добавление и сохранение всего массива. как Z.

Например, скажем, если число доступных устройств равно 1000, а размер проблемы (N) равен 1 000 000; n_per_device равен 1000 (и поскольку нет остатка, он одинаков для всех), и он будет генерировать 1000 массивов input_a и input_b, по 1000 элементов в каждом. Затем соответствующая пара массивов из 1000 элементов берется ядром и складывается вместе - другими словами, каждое выполнение ядра добавляет 1000 элементов?

Следую ли я чему-либо или здесь совершенно неправильно?

Ядро:

 // ACL kernel for adding two input vectors
__kernel void vectorAdd(__global const float *x, 
                        __global const float *y, 
                        __global float *restrict z)
{
    // get index of the work item
    int index = get_global_id(0);

    // add the vector elements
    z[index] = x[index] + y[index];
}

Хост (основной) код (извините, он длинный, не уверен, что не важно):

///////////////////////////////////////////////////////////////////////////////////
// This host program executes a vector addition kernel to perform:
//  C = A + B
// where A, B and C are vectors with N elements.
//
// This host program supports partitioning the problem across multiple OpenCL
// devices if available. If there are M available devices, the problem is
// divided so that each device operates on N/M points. The host program
// assumes that all devices are of the same type (that is, the same binary can
// be used), but the code can be generalized to support different device types
// easily.
//
// Verification is performed against the same computation on the host CPU.
///////////////////////////////////////////////////////////////////////////////////

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "CL/opencl.h"
#include "AOCL_Utils.h"

using namespace aocl_utils;

// OpenCL runtime configuration
cl_platform_id platform = NULL;
unsigned num_devices = 0;
scoped_array<cl_device_id> device; // num_devices elements
cl_context context = NULL;
scoped_array<cl_command_queue> queue; // num_devices elements
cl_program program = NULL;
scoped_array<cl_kernel> kernel; // num_devices elements
scoped_array<cl_mem> input_a_buf; // num_devices elements
scoped_array<cl_mem> input_b_buf; // num_devices elements
scoped_array<cl_mem> output_buf; // num_devices elements

// Problem data.
const unsigned N = 1000000; // problem size
scoped_array<scoped_aligned_ptr<float> > input_a, input_b; // num_devices elements
scoped_array<scoped_aligned_ptr<float> > output; // num_devices elements
scoped_array<scoped_array<float> > ref_output; // num_devices elements
scoped_array<unsigned> n_per_device; // num_devices elements

// Function prototypes
float rand_float();
bool init_opencl();
void init_problem();
void run();
void cleanup();

// Entry point.
int main() {
  // Initialize OpenCL.
  if(!init_opencl()) {
    return -1;
  }

  // Initialize the problem data.
  // Requires the number of devices to be known.
  init_problem();

  // Run the kernel.
  run();

  // Free the resources allocated
  cleanup();

  return 0;
}

/////// HELPER FUNCTIONS ///////

// Randomly generate a floating-point number between -10 and 10.
float rand_float() {
  return float(rand()) / float(RAND_MAX) * 20.0f - 10.0f;
}

// Initializes the OpenCL objects.
bool init_opencl() {
  cl_int status;

  printf("Initializing OpenCL\n");

  if(!setCwdToExeDir()) {
    return false;
  }

  // Get the OpenCL platform.
  platform = findPlatform("Altera");
  if(platform == NULL) {
    printf("ERROR: Unable to find Altera OpenCL platform.\n");
    return false;
  }

  // Query the available OpenCL device.
  device.reset(getDevices(platform, CL_DEVICE_TYPE_ALL, &num_devices));
  printf("Platform: %s\n", getPlatformName(platform).c_str());
  printf("Using %d device(s)\n", num_devices);
  for(unsigned i = 0; i < num_devices; ++i) {
    printf("  %s\n", getDeviceName(device[i]).c_str());
  }

  // Create the context.
  context = clCreateContext(NULL, num_devices, device, NULL, NULL, &status);
  checkError(status, "Failed to create context");

  // Create the program for all device. Use the first device as the
  // representative device (assuming all device are of the same type).
  std::string binary_file = getBoardBinaryFile("vectorAdd", device[0]);
  printf("Using AOCX: %s\n", binary_file.c_str());
  program = createProgramFromBinary(context, binary_file.c_str(), device, num_devices);

  // Build the program that was just created.
  status = clBuildProgram(program, 0, NULL, "", NULL, NULL);
  checkError(status, "Failed to build program");

  // Create per-device objects.
  queue.reset(num_devices);
  kernel.reset(num_devices);
  n_per_device.reset(num_devices);
  input_a_buf.reset(num_devices);
  input_b_buf.reset(num_devices);
  output_buf.reset(num_devices);

  for(unsigned i = 0; i < num_devices; ++i) {
    // Command queue.
    queue[i] = clCreateCommandQueue(context, device[i], CL_QUEUE_PROFILING_ENABLE, &status);
    checkError(status, "Failed to create command queue");

    // Kernel.
    const char *kernel_name = "vectorAdd";
    kernel[i] = clCreateKernel(program, kernel_name, &status);
    checkError(status, "Failed to create kernel");

    // Determine the number of elements processed by this device.
    n_per_device[i] = N / num_devices; // number of elements handled by this device

    // Spread out the remainder of the elements over the first
    // N % num_devices.
    if(i < (N % num_devices)) {
      n_per_device[i]++;
    }

    // Input buffers.
    input_a_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY, 
        n_per_device[i] * sizeof(float), NULL, &status);
    checkError(status, "Failed to create buffer for input A");

    input_b_buf[i] = clCreateBuffer(context, CL_MEM_READ_ONLY, 
        n_per_device[i] * sizeof(float), NULL, &status);
    checkError(status, "Failed to create buffer for input B");

    // Output buffer.
    output_buf[i] = clCreateBuffer(context, CL_MEM_WRITE_ONLY, 
        n_per_device[i] * sizeof(float), NULL, &status);
    checkError(status, "Failed to create buffer for output");
  }

  return true;
}

// Initialize the data for the problem. Requires num_devices to be known.
void init_problem() {
  if(num_devices == 0) {
    checkError(-1, "No devices");
  }

  input_a.reset(num_devices);
  input_b.reset(num_devices);
  output.reset(num_devices);
  ref_output.reset(num_devices);

  // Generate input vectors A and B and the reference output consisting
  // of a total of N elements.
  // We create separate arrays for each device so that each device has an
  // aligned buffer. 
  for(unsigned i = 0; i < num_devices; ++i) {
    input_a[i].reset(n_per_device[i]);
    input_b[i].reset(n_per_device[i]);
    output[i].reset(n_per_device[i]);
    ref_output[i].reset(n_per_device[i]);

    for(unsigned j = 0; j < n_per_device[i]; ++j) {
      input_a[i][j] = rand_float();
      input_b[i][j] = rand_float();
      ref_output[i][j] = input_a[i][j] + input_b[i][j];
    }
  }
}

void run() {
  cl_int status;

  const double start_time = getCurrentTimestamp();

  // Launch the problem for each device.
  scoped_array<cl_event> kernel_event(num_devices);
  scoped_array<cl_event> finish_event(num_devices);

  for(unsigned i = 0; i < num_devices; ++i) {

    // Transfer inputs to each device. Each of the host buffers supplied to
    // clEnqueueWriteBuffer here is already aligned to ensure that DMA is used
    // for the host-to-device transfer.
    cl_event write_event[2];
    status = clEnqueueWriteBuffer(queue[i], input_a_buf[i], CL_FALSE,
        0, n_per_device[i] * sizeof(float), input_a[i], 0, NULL, &write_event[0]);
    checkError(status, "Failed to transfer input A");

    status = clEnqueueWriteBuffer(queue[i], input_b_buf[i], CL_FALSE,
        0, n_per_device[i] * sizeof(float), input_b[i], 0, NULL, &write_event[1]);
    checkError(status, "Failed to transfer input B");

    // Set kernel arguments.
    unsigned argi = 0;

    status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem), &input_a_buf[i]);
    checkError(status, "Failed to set argument %d", argi - 1);

    status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem), &input_b_buf[i]);
    checkError(status, "Failed to set argument %d", argi - 1);

    status = clSetKernelArg(kernel[i], argi++, sizeof(cl_mem), &output_buf[i]);
    checkError(status, "Failed to set argument %d", argi - 1);

    // Enqueue kernel.
    // Use a global work size corresponding to the number of elements to add
    // for this device.
    // 
    // We don't specify a local work size and let the runtime choose
    // (it'll choose to use one work-group with the same size as the global
    // work-size).
    //
    // Events are used to ensure that the kernel is not launched until
    // the writes to the input buffers have completed.
    const size_t global_work_size = n_per_device[i];
    printf("Launching for device %d (%d elements)\n", i, global_work_size);

    status = clEnqueueNDRangeKernel(queue[i], kernel[i], 1, NULL,
        &global_work_size, NULL, 2, write_event, &kernel_event[i]);
    checkError(status, "Failed to launch kernel");

    // Read the result. This the final operation.
    status = clEnqueueReadBuffer(queue[i], output_buf[i], CL_FALSE,
        0, n_per_device[i] * sizeof(float), output[i], 1, &kernel_event[i], &finish_event[i]);

    // Release local events.
    clReleaseEvent(write_event[0]);
    clReleaseEvent(write_event[1]);
  }

  // Wait for all devices to finish.
  clWaitForEvents(num_devices, finish_event);

  const double end_time = getCurrentTimestamp();

  // Wall-clock time taken.
  printf("\nTime: %0.3f ms\n", (end_time - start_time) * 1e3);

  // Get kernel times using the OpenCL event profiling API.
  for(unsigned i = 0; i < num_devices; ++i) {
    cl_ulong time_ns = getStartEndTime(kernel_event[i]);
    printf("Kernel time (device %d): %0.3f ms\n", i, double(time_ns) * 1e-6);
  }

  // Release all events.
  for(unsigned i = 0; i < num_devices; ++i) {
    clReleaseEvent(kernel_event[i]);
    clReleaseEvent(finish_event[i]);
  }

  // Verify results.
  bool pass = true;
  for(unsigned i = 0; i < num_devices && pass; ++i) {
    for(unsigned j = 0; j < n_per_device[i] && pass; ++j) {
      if(fabsf(output[i][j] - ref_output[i][j]) > 1.0e-5f) {
        printf("Failed verification @ device %d, index %d\nOutput: %f\nReference: %f\n",
            i, j, output[i][j], ref_output[i][j]);
        pass = false;
      }
    }
  }

  printf("\nVerification: %s\n", pass ? "PASS" : "FAIL");
}

// Free the resources allocated during initialization
void cleanup() {
  for(unsigned i = 0; i < num_devices; ++i) {
    if(kernel && kernel[i]) {
      clReleaseKernel(kernel[i]);
    }
    if(queue && queue[i]) {
      clReleaseCommandQueue(queue[i]);
    }
    if(input_a_buf && input_a_buf[i]) {
      clReleaseMemObject(input_a_buf[i]);
    }
    if(input_b_buf && input_b_buf[i]) {
      clReleaseMemObject(input_b_buf[i]);
    }
    if(output_buf && output_buf[i]) {
      clReleaseMemObject(output_buf[i]);
    }
  }

  if(program) {
    clReleaseProgram(program);
  }
  if(context) {
    clReleaseContext(context);
  }
} 

1 Ответ

2 голосов
/ 03 февраля 2020

Здесь есть несколько подвопросов, поэтому я попытаюсь ответить на них индивидуально. Я собираюсь быть немного педанти c по терминологии; Я делаю это не для того, чтобы быть хитрым, но, надеюсь, это поможет вам лучше разобраться в документации, примерах и т. Д. c.:

Правильно ли будет сказать: каждое ядро ​​использует 1 элемент из A и 1 элемента из B для вычисления 1 элемента Z?

kernel - это просто код, который будет работать на устройстве OpenCL. Обычно ядро ​​планируется запустить (используя clEnqueueNDRangeKernel()) с несколькими рабочими элементами . Имея только один рабочий элемент, нет смысла вообще беспокоиться об OpenCL; выигрыш в производительности достигается за счет большого параллелизма. В любом случае ваше цитируемое утверждение верно для каждого отдельного рабочего элемента, обрабатывающего это ядро ​​. Если вы запустите это ядро ​​с 1000 рабочими элементами, 1000 элементов из A будут обработаны с 1000 элементами из B, чтобы вычислить 1000 элементов из Z. Порядок, в котором это происходит, намеренно не определен, и по крайней мере группы элементов будут работать одновременно.

Мне кажется, что он определяет количество устройств (num_devices) и по существу делит размер задачи (N) на num_devices, чтобы определить количество элементов на устройство (n_per_device []) , Затем он создает массивы случайных чисел для каждого устройства (input_a [] и input_b []) с количеством элементов n_per_device.

Да, мне это тоже кажется.

Например, скажем, если количество доступных устройств равно 1000,

Я просто хотел бы отметить, что у вас будет никогда столько устройств OpenCL в система. Степень детализации одного устройства OpenCL обычно составляет «один графический процессор» или «все ядра процессора в системе» или «одну карту ускорителя FPGA».

Таким образом, «обычное» количество устройств на рабочем столе система равна 1, 2 или может быть до 4 (например, CPU + iGPU + двойной дискретный графический процессор). Большие утюги со многими картами ускорителей могут иметь ~ 16 или около того. Если вы пытаетесь ускорить некоторый код в приложении для настольного компьютера (или небольшого сервера), вы обычно просто выбираете одно устройство, которое, вероятно, будет наиболее подходящим для вашей проблемы, и работайте с этим. Равномерное распределение рабочей нагрузки по разнородным устройствам является сложной проблемой для всех, кроме самых основных c алгоритмов.

и размер проблемы (N) составляет 1 000 000; n_per_device равен 1000 (и поскольку нет остатка, он одинаков для всех), и он будет генерировать 1000 массивов input_a и input_b, по 1000 элементов в каждом. Затем соответствующая пара массивов из 1000 элементов берется ядром и складывается вместе -

Да.

Другими словами, каждое выполнение ядра добавляет 1000 элементов?

Опять-таки, здесь термин «ядро» недостаточно точен. В вашем примере вы поставили бы в очередь 1000 рабочих элементов для запуска ядра на каждом из 1000 устройств.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...