Вы можете попробовать решение с базовым R.
sapply(seq(el(lengths(test))), function(x) do.call(rbind, lapply(test, `[[`, x)))
# [[1]]
# mpg cyl disp hp drat wt qsec vs am gear carb
# Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
# Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
# Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
# Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
# Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
# Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
# Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
# Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
# Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
# Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
# Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
# Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
# Porsche 914-21 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
# Lotus Europa1 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
# Ford Pantera L1 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
# Ferrari Dino1 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
# Maserati Bora1 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
# Volvo 142E1 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
#
# [[2]]
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 1 5.1 3.5 1.4 0.2 setosa
# 2 4.9 3.0 1.4 0.2 setosa
# 3 4.7 3.2 1.3 0.2 setosa
# 4 4.6 3.1 1.5 0.2 setosa
# 5 5.0 3.6 1.4 0.2 setosa
# 6 5.4 3.9 1.7 0.4 setosa
# 145 6.7 3.3 5.7 2.5 virginica
# 146 6.7 3.0 5.2 2.3 virginica
# 147 6.3 2.5 5.0 1.9 virginica
# 148 6.5 3.0 5.2 2.0 virginica
# 149 6.2 3.4 5.4 2.3 virginica
# 150 5.9 3.0 5.1 1.8 virginica
# 1451 6.7 3.3 5.7 2.5 virginica
# 1461 6.7 3.0 5.2 2.3 virginica
# 1471 6.3 2.5 5.0 1.9 virginica
# 1481 6.5 3.0 5.2 2.0 virginica
# 1491 6.2 3.4 5.4 2.3 virginica
# 1501 5.9 3.0 5.1 1.8 virginica
Хотя это медленно. Что касается производительности, то стоит взглянуть на data.table
.
sapply(seq(el(lengths(test))), function(x) data.table::rbindlist(lapply(test, `[[`, x)))
Или --- немного неловко, но быстро:
Map(function(x)
data.table::rbindlist(unlist(test, recursive=F)[x]), list(c(1, 3, 5), c(1, 3, 5) + 1))
И вот идет микробенчмарк:
library(dplyr)
library(stringr)
library(purrr)
microbenchmark::microbenchmark(
OP=lapply(seq(el(lengths(test))), function(x) purrr::map_dfr(test, ~ .[[x]])),
sapply=sapply(seq(el(lengths(test))), function(x)
do.call(rbind, lapply(test, `[[`, x))),
stringr=test %>%
flatten %>%
split(str_remove(names(.), '\\d+')) %>%
map(bind_rows),
unlistDT=Map(function(x) do.call(rbind, unlist(test, recursive=F)[x]), list(c(1, 3, 5), c(1, 3, 5) + 1)),
sapplyDT=sapply(seq(el(lengths(test))), function(x)
data.table::rbindlist(lapply(test, `[[`, x))),
MapUnlistDT=Map(function(x) data.table::rbindlist(unlist(test, recursive=F)[x]), list(c(1, 3, 5), c(1, 3, 5) + 1))
)
# Unit: microseconds
# expr min lq mean median uq max neval cld
# OP 504.664 522.6505 557.3472 530.6880 542.0415 2328.392 100 b
# sapply 1003.970 1022.8495 1083.9883 1038.2850 1061.5030 3638.017 100 d
# stringr 740.156 788.6325 812.7278 805.7265 824.3520 1164.452 100 c
# unlistDT 997.591 1015.1950 1069.0347 1031.2690 1042.7505 3659.193 100 d
# sapplyDT 319.178 334.4860 455.9246 348.7740 361.4040 8678.784 100 ab
# MapUnlistDT 285.244 305.5285 347.5572 321.0920 331.8080 2772.333 100 a