Я хотел бы вернуть кадр данных dask из перекрывающегося вычисления массива dask, где каждый блок вычислений возвращает кадр данных pandas. В приведенном ниже примере показан один из способов сделать это, упрощенный для демонстрационных целей. Я нашел комбинацию da.overlap.overlap
и to_delayed().ravel()
как способную выполнить работу, если я передам соответствующий ключ блока и информацию о чанке.
Редактировать: Спасибо @AnnaM, который обнаружил ошибки в оригинальном сообщении, а затем сделал его общим! Основываясь на ее комментариях, я включаю обновленную версию кода. Кроме того, отвечая на интерес Анны к использованию памяти, я убедился, что это, кажется, не занимает больше памяти, чем наивно ожидалось.
def extract_features_generalized(chunk, offsets, depth, columns):
shape = np.asarray(chunk.shape)
offsets = np.asarray(offsets)
depth = np.asarray(depth)
coordinates = np.stack(np.nonzero(chunk)).T
keep = ((coordinates >= depth) & (coordinates < (shape - depth))).all(axis=1)
data = coordinates + offsets - depth
df = pd.DataFrame(data=data, columns=columns)
return df[keep]
def my_overlap_generalized(data, chunksize, depth, columns, boundary):
data = data.rechunk(chunksize)
data_overlapping_chunks = da.overlap.overlap(data, depth=depth, boundary=boundary)
dfs = []
for block in data_overlapping_chunks.to_delayed().ravel():
offsets = np.array(block.key[1:]) * np.array(data.chunksize)
df_block = dask.delayed(extract_features_generalized)(block, offsets=offsets,
depth=depth, columns=columns)
dfs.append(df_block)
return dd.from_delayed(dfs)
data = np.zeros((2,4,8,16,16))
data[0,0,4,2,2] = 1
data[0,1,4,6,2] = 1
data[1,2,4,8,2] = 1
data[0,3,4,2,2] = 1
arr = da.from_array(data)
df = my_overlap_generalized(arr,
chunksize=(-1,-1,-1,8,8),
depth=(0,0,0,2,2),
columns=['r', 'c', 'z', 'y', 'x'],
boundary=tuple(['reflect']*5))
df.compute().reset_index()
- Остаток оригинального сообщения, включая оригинальные ошибки -
Мой пример только перекрывает xy, но его легко обобщить. Есть ли что-нибудь ниже, что является неоптимальным или может быть сделано лучше? Может ли что-нибудь сломаться, потому что оно полагается на информацию низкого уровня, которая может измениться (например, ключ блока)?
def my_overlap(data, chunk_xy, depth_xy):
data = data.rechunk((-1,-1,-1, chunk_xy, chunk_xy))
data_overlapping_chunks = da.overlap.overlap(data,
depth=(0,0,0,depth_xy,depth_xy),
boundary={3: 'reflect', 4: 'reflect'})
dfs = []
for block in data_overlapping_chunks.to_delayed().ravel():
offsets = np.array(block.key[1:]) * np.array(data.chunksize)
df_block = dask.delayed(extract_features)(block, offsets=offsets, depth_xy=depth_xy)
dfs.append(df_block)
# All computation is delayed, so downstream comptutions need to know the format of the data. If the meta
# information is not specified, a single computation will be done (which could be expensive) at this point
# to infer the metadata.
# This empty dataframe has the index, column, and type information we expect in the computation.
columns = ['r', 'c', 'z', 'y', 'x']
# The dtypes are float64, except for a small number of columns
df_meta = pd.DataFrame(columns=columns, dtype=np.float64)
df_meta = df_meta.astype({'c': np.int64, 'r': np.int64})
df_meta.index.name = 'feature'
return dd.from_delayed(dfs, meta=df_meta)
def extract_features(chunk, offsets, depth_xy):
r, c, z, y, x = np.nonzero(chunk)
df = pd.DataFrame({'r': r, 'c': c, 'z': z, 'y': y+offsets[3]-depth_xy,
'x': x+offsets[4]-depth_xy})
df = df[(df.y > depth_xy) & (df.y < (chunk.shape[3] - depth_xy)) &
(df.z > depth_xy) & (df.z < (chunk.shape[4] - depth_xy))]
return df
data = np.zeros((2,4,8,16,16)) # round, channel, z, y, x
data[0,0,4,2,2] = 1
data[0,1,4,6,2] = 1
data[1,2,4,8,2] = 1
data[0,3,4,2,2] = 1
arr = da.from_array(data)
df = my_overlap(arr, chunk_xy=8, depth_xy=2)
df.compute().reset_index()