Вы можете использовать itertools.combination для этого:
>>> import pandas as pd
>>> from itertools import combinations
>>> df = pd.DataFrame({
... "A": [1,1,1,0,1],
... "B": [1,1,0,0,1],
... "C": [.75,1,.35,1,0]
... })
>>> df.head()
A B C
0 1 1 0.75
1 1 1 1.00
2 1 0 0.35
3 0 0 1.00
4 1 1 0.00
>>> for col1, col2 in combinations(df.columns, 2):
... df[f"{col1}_{col2}"] = df[col1] * df[col2]
...
>>> df.head()
A B C A_B A_C B_C
0 1 1 0.75 1 0.75 0.75
1 1 1 1.00 1 1.00 1.00
2 1 0 0.35 0 0.35 0.00
3 0 0 1.00 0 0.00 0.00
4 1 1 0.00 1 0.00 0.00
Если вам нужно векторизовать произвольную функцию для пар столбцов, которые вы можете использовать:
import numpy as np
def fx(x, y):
return np.multiply(x, y)
for col1, col2 in combinations(df.columns, 2):
df[f"{col1}_{col2}"] = np.vectorize(fx)(df[col1], df[col2])