К соответствуют два data.frames
в нескольких столбцах , которые можно использовать из base слияния или соответствия в сочетании с , вставьте или используйте список . Также возможно отобразить два целых числа в одно уникальным и детерминированным способом c 1017 *. Простое расширение - это библиотека fastmatch
, которая может быть быстрее, чем match
с base . Также dplyr
или data.table
может быть опцией. Посмотрите также: Соответствует более чем 2 условиям , Как объединить (объединить) фреймы данных и Быстрый поиск по одному элементу .
library(fastmatch)
library(dplyr)
library(microbenchmark)
microbenchmark(times = 10L, setup = gc(), check = "equivalent"
, merge = merge(lookMeUp, lookupTable, all.x=TRUE, sort=FALSE)
, dplyr = left_join(lookMeUp, lookupTable, by = c("i1", "i2"))
, inter = cbind(lookMeUp, lookupTable[match(interaction(lookMeUp[c("i1","i2")])
, interaction(lookupTable[c("i1","i2")])), 3:4])
, paste = cbind(lookMeUp, lookupTable[match(paste(lookMeUp$i1, lookMeUp$i2)
, paste(lookupTable$i1, lookupTable$i2)), 3:4])
, int = cbind(lookMeUp, lookupTable[match(lookMeUp$i1 + lookMeUp$i2 * max(lookupTable$i1)
, lookupTable$i1 + lookupTable$i2 * max(lookupTable$i1)), 3:4])
, fInter = cbind(lookMeUp, lookupTable[fmatch(interaction(lookMeUp[c("i1","i2")])
, interaction(lookupTable[c("i1","i2")])), 3:4])
, fPaste = cbind(lookMeUp, lookupTable[fmatch(paste(lookMeUp$i1, lookMeUp$i2)
, paste(lookupTable$i1, lookupTable$i2)), 3:4])
, fint = cbind(lookMeUp, lookupTable[fmatch(lookMeUp$i1 + lookMeUp$i2 * max(lookMeUp$i1)
, lookupTable$i1 + lookupTable$i2 * max(lookMeUp$i1)), 3:4])
)
#Unit: milliseconds
# expr min lq mean median uq max neval
# merge 2547.72575 2564.72138 2590.03400 2578.14307 2585.01870 2735.23435 10
# dplyr 690.55046 695.56161 703.01335 703.95085 707.32141 714.00890 10
# inter 511.86378 514.36418 528.73905 529.14331 535.33359 552.20183 10
# paste 750.01340 763.84494 942.47309 777.73232 1273.83380 1377.00192 10
# int 71.56913 72.15233 73.27748 72.92613 73.89630 77.01510 10
# fInter 447.82012 450.00472 459.51196 455.82473 464.85767 491.52366 10
# fPaste 713.68824 719.60794 796.94680 726.70971 788.36997 1316.64071 10
# fint 59.04541 59.13039 60.95638 60.59758 62.58539 63.65308 10
Вместо того, чтобы создавать уникальный идентификатор каждый раз, когда вы просматриваете, вы можете сохранить его в таблице поиска, что ускорит поиск, но у вас есть дополнительные затраты на его создание. Вы также можете отсортировать таблицу поиска по этому идентификатору, что позволит получить доступ к строке данных без использования match
, но этот метод добавит не определенные строки в случае отсутствия некоторых комбинаций, что будет эквивалентно при создании matrix
или array
. Вы также можете использовать сборку в ha sh для поиска переменных в environment
. Также можно использовать бинарный поиск из findInterval
.
system.time({maxLTi1 <- max(lookupTable$i1); lookupTable$id <- lookupTable$i1 + lookupTable$i2 * maxLTi1})
# User System verstrichen
# 0.006 0.000 0.006
system.time(fmatch(c(lookupTable$id[1], 0), lookupTable$id)) #Create Hash
# User System verstrichen
# 0.056 0.000 0.056
#system.time(fmatch(lookupTable$id[1], lookupTable$id)) #Create Hash in case you have only matches
# User System verstrichen
# 0.016 0.004 0.020
system.time({
lookupTableS <- lookupTable[0,]
lookupTableS[lookupTable$id,] <- lookupTable #Sort Table with gaps
})
# User System verstrichen
# 0.080 0.011 0.091
system.time({
lookupTableS2 <- lookupTable[order(lookupTable$id),] #Sort Table
})
# User System verstrichen
# 0.074 0.000 0.074
library(Matrix)
system.time({ #Sorted Sparse Vector
i <- order(lookupTable$id)
lookupTableS3 <- sparseVector(i, lookupTable$id[i], max(lookupTable$id))})
# User System verstrichen
# 0.057 0.008 0.065
system.time(lupEnv <- list2env(setNames(as.list(seq_len(nrow(lookupTable))), paste(lookupTable$i1, lookupTable$i2))))
# User System verstrichen
# 4.824 0.056 4.880
library(data.table);
lookupTableDT <- as.data.table(copy(lookupTable))
lookMeUpDT <- as.data.table(copy(lookMeUp))
system.time(setkey(lookupTableDT, i1, i2))
# User System verstrichen
# 0.094 0.000 0.027
lookMeUpDT$id <- lookMeUp$i1 + lookMeUp$i2 * max(lookupTable$i1)
lookupTableDTId <- as.data.table(copy(lookupTable))
system.time(setkey(lookupTableDTId, id))
# User System verstrichen
# 0.091 0.000 0.026
lookMeUpDTId <- copy(lookMeUpDT)
lookMeUpDTId$row <- seq_len(nrow(lookMeUpDTId))
setkey(lookMeUpDTId, id)
microbenchmark(times = 10L, setup = gc(), check = "equivalent"
, int = cbind(lookMeUp, lookupTable[match(lookMeUp$i1 + lookMeUp$i2 * max(lookupTable$i1)
, lookupTable$i1 + lookupTable$i2 * max(lookupTable$i1)), 3:4])
, fint = cbind(lookMeUp, lookupTable[fmatch(lookMeUp$i1 + lookMeUp$i2 * max(lookMeUp$i1)
, lookupTable$i1 + lookupTable$i2 * max(lookMeUp$i1)), 3:4])
, id = cbind(lookMeUp, lookupTable[match(lookMeUp$i1 + lookMeUp$i2 * maxLTi1
, lookupTable$id), 3:4])
, sparid = {i <- lookMeUp$i1 + lookMeUp$i2 * maxLTi1
j <- i
j[i>0] <- as.vector(lookupTableS3[i[i>0]])
cbind(lookMeUp, lookupTable[ifelse(j>0,j,NA), 3:4])}
, DT = merge(lookMeUpDT[,1:3], lookupTableDT[,1:4], by=c("i1", "i2"), all.x=TRUE, sort = FALSE)
, DTid = merge(lookMeUpDT, lookupTableDTId[,-2:-1], by=c("id"), all.x=TRUE, sort = FALSE)[,-1]
, DiIdKey = merge(lookMeUpDTId, lookupTableDTId[,-2:-1], all.x=TRUE, sort = FALSE)[order(row),][,c(-1,-5)]
, findInt = {i <- lookMeUp$i1 + lookMeUp$i2 * maxLTi1
j <- findInterval(i, lookupTableS2$id)
j[j==0] <- NA
j[i != lookupTableS2$id[j]] <- NA
cbind(lookMeUp, lookupTableS2[j, 3:4])}
, envir = cbind(lookMeUp, lookupTable[vapply(paste(lookMeUp$i1, lookMeUp$i2), function(i) {x <- lupEnv[[i]]; if(is.null(x)) NA else x}, 1), 3:4])
, fid = cbind(lookMeUp, lookupTable[fmatch(lookMeUp$i1 + lookMeUp$i2 * maxLTi1
, lookupTable$id), 3:4])
, sid = cbind(lookMeUp, lookupTableS[ifelse(lookMeUp$i1 > 0, lookMeUp$i1 + lookMeUp$i2 * maxLTi1, NA), 3:4])
)
#Unit: microseconds
# expr min lq mean median uq max neval
# int 75167.977 76446.819 77817.3349 77958.9650 78649.235 80656.715 10
# fint 63332.436 63948.769 64574.8881 64194.2765 64942.559 66808.193 10
# id 68198.639 69293.551 70477.6062 70223.0505 71393.354 74951.007 10
# sparid 9181.928 9217.312 9552.0241 9478.8475 9561.917 10895.649 10
# DT 4990.075 5000.857 5125.6716 5051.4970 5157.057 5547.220 10
# DTid 4167.229 4189.703 4250.0804 4232.8955 4289.718 4440.924 10
# DiIdKey 4547.589 4582.915 4626.9514 4597.6790 4634.311 4867.630 10
# findInt 2795.560 2813.100 2854.7069 2815.4890 2857.084 3097.120 10
# envir 526.971 530.459 537.5767 532.9755 546.402 551.231 10
# fid 424.790 425.218 433.7295 433.3335 441.673 444.026 10
# sid 436.135 439.688 445.1770 441.5705 445.331 464.685 10
#In case order and columns need not be like the others
microbenchmark(times = 10L, setup = gc(), unit = "us",
DiIdKey = merge(lookMeUpDTId, lookupTableDTId, all.x=TRUE, sort = FALSE))
#Unit: microseconds
# expr min lq mean median uq max neval
# DiIdKey 1692.629 1706.14 1719.556 1717.142 1722.067 1778.88 10
Создание уникального идентификатора и сохранение его в таблице поиска с использованием fmatch
может быть рекомендуется . В чистом base таблица поиска может быть отсортирована по идентификатору, а отсутствующие комбинации будут заполнены символом NA, что обеспечивает прямой доступ к соответствующим строкам без использования match
. В качестве альтернативы поиск может быть выполнен в среде, в которой используется сборка в поиске ha sh, но это имеет много накладных расходов. Также использование findInterval
показывает хорошие результаты.
В случае, если столбцы не являются (положительными) integer
, приведите их к factor
и используйте их целочисленные значения.
Данные:
set.seed(7)
sqrtN <- 1e3
lookupTable <- data.frame(expand.grid(i1=seq_len(sqrtN), i2=seq_len(sqrtN)), v1=seq_len(sqrtN*sqrtN))[sample(sqrtN*sqrtN),]
lookupTable$v2 <- seq_len(sqrtN*sqrtN)
lookMeUp <- rbind(lookupTable[sample(nrow(lookupTable), 10), 1:2], c(-1, -1))
lookMeUp$vA <- letters[1:nrow(lookMeUp)]
Синхронизация таблицы поиска с 5e7 строками:
sqrtN <- 7.1e3
lookupTable <- data.frame(expand.grid(i1=seq_len(sqrtN), i2=seq_len(sqrtN)), v1=seq_len(sqrtN*sqrtN))[sample(sqrtN*sqrtN),]
lookupTable$v2 <- seq_len(sqrtN*sqrtN)
lookMeUp <- rbind(lookupTable[sample(nrow(lookupTable), 10), 1:2], c(-1, -1))
lookMeUp$vA <- letters[1:nrow(lookMeUp)]
system.time({maxLTi1 <- max(lookupTable$i1); lookupTable$id <- lookupTable$i1 + lookupTable$i2 * maxLTi1})
# User System verstrichen
# 0.312 0.016 0.329
system.time(lookupTable <- lookupTable[order(lookupTable$id),]) #For findIntervall
# User System verstrichen
# 6.786 0.120 6.905
system.time({
i <- lookMeUp$i1 + lookMeUp$i2 * maxLTi1
j <- findInterval(i, lookupTable$id)
j[j==0] <- NA
j[i != lookupTable$id[j]] <- NA
cbind(lookMeUp, lookupTable[j, 3:4])
})
# User System verstrichen
# 0.099 0.048 0.147
system.time(fmatch(c(lookupTable$id[1], 0), lookupTable$id)) #Create Hash
# User System verstrichen
# 2.642 0.120 2.762
system.time(cbind(lookMeUp, lookupTable[fmatch(lookMeUp$i1 + lookMeUp$i2 * maxLTi1, lookupTable$id), 3:4]))
# User System verstrichen
# 0 0 0